

MAASAI MARA UNIVERSITY REGULAR UNIVERSITY EXAMINATIONS 2022/2023

SCHOOL OF BUSINESS AND ECONOMICS BACHELOR'S OF SCIENCE IN ECONOMICS AND STATISTICS

FOURTH YEAR SECOND SEMESTER

COURSE CODE: ECS 4207 COURSE TITLE: PROBABILITY & STATISTICS

DATE:

TIME:

INSTRUCTIONS: Attempt Question one and any other Three Questions

Question One

- a. A pharmaceutical company states that the average number of people that have serious medical issues with their medicine is only 3 people per year. The medicine is sold to millions of people.
 - What is the probability that 6 people will have serious medical issues with their medicine? (2 marks)
 - ii. What is the probability that fewer than 6 people will have serious medical issues with their medicine? (3 marks)
 - iii. What is the probability that 6 or more people will have serious medical issues with their medicine? (2 marks)
- b. At certain restaurant customers arrives at an average rate of 5 customers per hour during the off-peak period and 15 customers per hour during the peak period. If the peak period only last for 3 hours a day while the restaurant only operates for 12 hours a day. Determine;
 - i. The probability that only 6 customers arrive at the restaurant during a 2-hour off-peak period. (2 marks)
 - ii. The probability that exactly 25 customers arrive at the restaurant during the entire peak period. (2 marks)
 - iii. The probability that the expected number of customers during the entire off-peak period arrive during the entire peak period.

(3 marks)

c. Let *X* be a continuous random variable with probability density function.

$$f(x) = \begin{cases} \frac{x}{8} & 0 \le x \le 4\\ 0 & elsewhere \end{cases}$$

Determine

i.	$\Pr(x \ge 2).$	(2 marks)
ii.	$\Pr(1 \le x \le 3)$	(2 marks)
iii.	E(X)	(3 marks)
iv.	Probability distribution of $y = 2x + 4$.	(4 marks)

Question Two

For a random variable X with pdf.

$$f(x) = \begin{cases} 3x^3 & 0 \le x \le 1\\ 0 & otherwise \end{cases}$$

Determine

a.	$\Pr(0.3 \le x \le 0.6).$	(2 marks)
b.	Probability density function of $Y = 3\ln(x)$.	(4 marks)
c.	$\Pr(Y < -100).$	(3 marks)
d.	F(Y).	(3 marks)
e.	M(t).	(3 marks)

Question Three

A random variable X has a probability density function given as

$$f(X) = \begin{cases} kx(1-x) & 0 \le x \le 1\\ 0 & elsewhere \end{cases}$$

Determine;

Value of k.	(3 marks)
E(X).	(3 marks)
F(X).	(3 marks)
Median of X.	(2 marks)
Interquartile Range.	(4 marks)
	E(X). $F(X)$.Median of X.

Question Four

- a. A coin is loaded so that heads has 60% chance of showing up. This coin is tossed 3 times.
 - i. What is the probability that the head turns out at least twice?

(3 marks)

- ii. What is the probability that an odd number of heads turn out in 3 flips? (3 marks)
- b. A random variable *X* has a pdf;

$$f(x) = \begin{cases} 24x^2 & 0 \le x \le \frac{1}{2} \\ 0 & elsewhere \end{cases}$$

Determine;

i.	CDF of X.
ii.	The pdf of $Y = 8X^3$.
iii.	E(Y).

(3 marks) (4 marks) (2 marks)

Question Five

a. For a certain type of computers, the length of time between charges of the battery is normally distributed with a mean of 50 hours and a standard deviation of 15 hours. John owns one of these computers and wants to know the probability that the length of time between charges will be.

i.	At least 30 hours.	(3 marks)
ii.	Between 25 and 65 hours.	(3 marks)
iii.	Between 1 $\frac{1}{2}$ and 3 days.	(3 marks)

b. A continuous random variable has the pdf given by

$$f(x) = \begin{cases} k(1+x) & -1 \le x \le 0\\ 2k(1-x) & 0 \le x \le 1\\ 0 & otherwise \end{cases}$$

i. Determine the value of k. (3 marks)
ii. CDF of X. (3 marks)