

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR THIRD YEAR SECOND SEMESTER

SCHOOL OF BUSINESS AND ECONOMICS BACHELOR OF SCIENCE (ECONOMICS & STATISTICS)

COURSE CODE:ECS 3204 COURSE TITLE: THEORY OF ESTIMATION

DATE: 19/4/ 2023

TIME: 1100-1300 HRS

INSTRUCTIONS TO CANDIDATES

- 1. Answer **<u>Question ONE</u>** and any other **Two** questions.
- 2. Show all the workings clearly
- 3. Do not write on the question paper
- 4. All Examination Rules Apply.

(3 marks)

(6 marks)

QUESTION ONE (30 MARKS)

(a) Let $x_1, x_2, ..., x_n$ be a random sample from the p.d.f

$$f(x;\theta) = \begin{cases} \theta^2 x e^{-\theta x}, \ 0 < x < \infty \\ 0, elsewhere \end{cases}$$

Find (i) the method of moments estimator for θ (5 marks)

(ii) the maximum likelihood estimator of θ (3 marks)

- (b) (i) Explain what is meant by a sequence of estimators being mean squared error consistent (3 marks)
 - (ii) Define a *UMVUE* for a parameter $\tau(\theta)$ (4 marks)
- (c) Let $x_1, x_2, ..., x_n$ be a random sample from the p.d.f

$$f(x;\theta) = \begin{cases} \theta(1-\theta)^{x}, x=0,1,2,..., 0 < \theta < 1\\ 0, elsewhere \end{cases}$$

Find the sufficient statistics for θ

(d) Let $x_1, x_2, ..., x_n$ be a random sample from $N(\mu, \sigma^2)$ where μ is known and σ^2 is

unknown. Find the *UMVUE* of σ^2

(e) Independent random samples of the heights of adult males living in two counties yielded the following results.

n=12, $\bar{x} = 65.7$ $\sigma_x^2 = 16$ *m*=15, $\bar{y} = 68.2$ $\sigma_y^2 = 9$

Find the 98% confidence interval for the difference $\mu_x - \mu_y$ (5 marks)

QUESTION TWO (20 MARKS)

- (a) Describe the method of maximum likelihood estimation. (8 marks)
- (b) Let $x_1, x_2, ..., x_n$ be a random sample from the p.d.f

$$f(x;\theta) = \begin{cases} \theta x^{\theta-1}, & 0 < \theta < 1, \\ 0 & \text{, elsewhere} \end{cases}$$

(i)	Show that the max	imum like	lihood es	timator o	f θ is $\theta =$	$-\frac{n}{\ln\left(\prod_{i=1}^{n} x_{i}\right)}$ (3 marks)			
(ii)	Below are 10 observations from this								
	distribution 0.2228	0.7112	0.9924	0.9518	0.8609				
	0.8278	0.7464	0.4374	0.3125	0.9960				
	Find the maximum	(3 marks)							
(c) For	the p.d.f in (b) above,	find							
(i)	the method of mon	the method of moments estimator for θ							
(ii)	the moments estim	(6 marks)							

QUESTION THREE (20 MARKS)

- (a) State the Cramer-Rao inequality (3 marks)
- (b) Let $x_1, x_2, ..., x_n$ be a random sample from $N(\theta, 9)$
 - (i) Find the Cramer-Rao lower bound for the variance of unbiased estimators of θ

(5 marks)
(ii) the UMVUE of
$$\theta$$
 (8 marks)
(c) Find the UMVUE of $\frac{1}{\theta}$ given that $x_1, x_2, ..., x_n$ be a random sample from
p.d.f $f(x; \theta) = \begin{cases} \theta e^{-\theta x}, & 0 < x < \infty, & 0 < \theta < \infty \\ 0, & elsewhere \end{cases}$ (4
marks)

QUESTION FOUR (20 MARKS)

- (a) Define a pivotal quantity (3 marks)
 (b) Let x₁, x₂,..., x_n be a random sample from N(μ, σ²) where both μ and σ² is unknown. Find the 100(1-α)% confidence interval for σ². (8 marks)
- (c) Below are 25 observed values from $N(\mu, \sigma^2)$

232	318	174	208	380	308	277	315	248
.306	269	325	190	266	285	222	210	
258	183	172	215	228	241	252	144	

Find the 90% confidence interval for σ^2

(9 marks)

//END//