

MAASAI MARA UNIVERSITY REGULAR UNIVERSITY EXAMINATIONS 2022/2023

SCHOOL OF BUSINESS AND ECONOMICS BACHELOR'S OF SCIENCE IN ECONOMICS AND STATISTICS FIRST YEAR SECOND SEMESTER

COURSE CODE: ECS 1203-1

COURSE TITLE: PROBABILITY AND DISTRIBUTION THEORY

DATE:

TIME:

INSTRUCTIONS: Attempt Question One and any other Two Questions

He sells more than 4 policies.

b. In a game of cards each player is supplied with 4 cards from a group of well shuffled standard deck of card. Determined the probability that out of the 4 cards given to a player.

a. A car insurance broker found that the number of policy sales follows a

per week. Calculate the probability that in a given week

Poisson distributed with an average of three car insurance policies sold

- i. Two are flower cards.
- ii. Two are flowers, 1 is diamond and 1 is heart card. (3 marks)
- iii. Two of the cards are numbers.

He does not sell any policy.

He sells at most 4 policies.

c. The sales made by a company each month was determined to be as distributed in the table below;

Sales	1000 -	5000 -	10000 -	15000 -	20000 -
	5000	10000	15000	20000	40000
Probability	2c	2.5c	3c	1.5c	С

Determine.

i. The value of C.

(2 marks)

ii. The quarterly standard deviation in sales for the company.

(4 marks)

Question Two

A random variable X has a probability density function given as

$$f(X) = \begin{cases} kx(1-x) & 0 \le x \le 1\\ 0 & elsewhere \end{cases}$$

Determine;

a.	Value of <i>k</i> .	(3 marks)
b.	E(X).	(3 marks)
c.	F(X).	(3 marks)
d.	Median of X.	(2 marks)
e.	Interquartile Range.	(4 marks)

Question One

i.

ii.

iii.

(2 marks)

(2 marks)

(3 marks)

(2 marks)

(2 marks)

Question Three

A discrete random variable X has a p.m.f given by

$$f(X) = \begin{cases} c\left(\frac{3}{10}\right)^x & x = 0, 1, 2, 3....\\ 0 & otherwise \end{cases}$$

Determine;

a.	The values of <i>c</i> .	(3 marks)
b.	$\Pr(X > 4).$	(3 marks)
C.	M(t).	(3 marks)
d.	E(X) using $M(t)$.	(3 marks)
e.	$\operatorname{var}(X)$ using $M(t)$.	(3 marks)

Question Four

For a random variable X with pdf.

$$f(x) = \begin{cases} 2x & 0 \le x \le 1\\ 0 & otherwise \end{cases}$$

Determine

$\Pr(0.5 \le x \le 0.8).$	(2 marks)
Probability density function of $Y = 2\ln(x)$.	(4 marks)
$\Pr(Y > -150).$	(3 marks)
F(Y).	(3 marks)
M(t).	(3 marks)
	Probability density function of $Y = 2\ln(x)$. Pr $(Y > -150)$. F(Y).

END

ALL THE BEST