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Abstract
Synanthropic bats live in close proximity to humans and domestic animals, creating 
opportunities for potential pathogen spillover. We explored environmental correlates 
of occurrence for a widely distributed synanthropic African bat, Mops pumilus—a spe-
cies associated with potential zoonotic viruses—and estimated current and future en-
vironmental suitability in the Taita Hills region and surrounding plains in Taita–Taveta 
County in southeast Kenya. To project future environmental suitability, we used four 
Coupled Model Intercomparison Project Phase 6 general circulation models that 
capture temperature and precipitation changes for East Africa. The models were pa-
rameterized with empirical capture data of M. pumilus collected from 2016 to 2023, 
combined with satellite-based vegetation, topographic, and climatic data to identify 
responses to environmental factors. The strongest drivers for current environmental 
suitability for M. pumilus were short distance to rivers, higher precipitation during the 
driest months, sparse vegetation—often related to urban areas—and low yearly tem-
perature variation. To predict current and future areas suitable for M. pumilus, we cre-
ated ensemble niche models, which yielded excellent predictive accuracies. Current 
suitable environments were located southward from the central and southern Taita 
Hills and surrounding plains, overlapping with urban centers with the highest human 
population densities in the area. Future projections for 2050 indicated a moderate in-
crease in suitability range in the southern portion of the region and surrounding plains 
in human-dominated areas; however, projections for 2090 showed a slight contraction 
of environmental suitability for M. pumilus, potentially due to the negative impact of 
increased temperatures. These results show how environmental changes are likely to 
impact the human exposure risk of bat-borne pathogens and could help public health 
officials develop strategies to prevent these risks in Taita–Taveta County, Kenya, and 
other parts of Africa.
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1  |  INTRODUC TION

Understanding the spatial overlap between humans and wildlife 
across landscapes is necessary for developing strategies that pre-
vent human exposure to wildlife-borne zoonotic pathogens. In an-
thropogenic spaces, synanthropic wildlife species live alongside 
humans and their domestic animals. Urban wildlife poses a greater 
risk of human exposure to pathogens because of high contact rates 
with humans and because of the variety of zoonotic pathogens that 
they harbor (Albery et al., 2022; Bradley & Altizer, 2007; Plowright 
et al., 2017).

The African continent has the world's fastest-growing human 
population. Kenya ranks among the most populated nations in Africa 
with a total population of 52.5 million people in 2021, which is pro-
jected to double by the end of the 21st century (UN, 2022). With 
accelerating urbanization and agriculturalization to accommodate 
this population growth, increasing human interactions with wild-
life are likely (Baker et al., 2022). Together with the impacts of cli-
mate change, developing infrastructure, and human mobility, these 
phenomena boost disease emergence and spillover risk across the 
landscape.

Bats are a diverse group of mammals that can be found in 
areas with varying degrees of urbanization and on all continents 
inhabited by humans (Simmons & Cirranello, 2023). Many bat spe-
cies are synanthropic, with several species continuing to adapt 
to and exploit anthropogenic areas (Schoeman,  2016). The use 
of urban areas brings bats and humans into shared spaces where 
human–bat contact can occur (Russo & Ancillotto, 2015). Bats are 
reservoirs for emerging pathogens (Olival et  al.,  2017), includ-
ing highly pathogenic viruses from families like Coronaviridae 
(Lane et  al.,  2022; Tong et  al.,  2009), Adenoviridae (Waruhiu 
et al., 2017), Paramyxoviridae (Lane et al., 2022), and Filoviridae 
(Amman et  al., 2020; Forbes et  al., 2019; Goldstein et  al., 2018; 
Kareinen et al., 2020). Bats are additionally known to be infected 
by highly pathogenic species of Togaviridae and Flaviviridae 
(Calisher et  al.,  2006; Kading et  al.,  2022; Karan et  al.,  2019; 
Waruhiu et al., 2017). Because of their proximity to humans and 
their ability to host a diversity of pathogens, some synanthropic 
bat species may pose significant risks to human health, and inter-
vention strategies are needed to understand the potential distri-
bution of these species across landscapes.

The insectivorous little free-tailed bat, Mops pumilus (family 
Molossidae) is widely distributed across the African continent; 
the geographical range of the species extends from the Horn of 
Africa (Ethiopia, Djibouti, Eritrea) to the Middle East (Yemen and 
Saudi Arabia), including areas identified as hotspots for emerging 
infectious diseases (Bett et al., 2020). The species is found in a di-
versity of environments, including woodland, rainforest, bushland, 

thicket, and agricultural areas but also in urban and suburban areas 
(Schoeman,  2016; Wilson & Mittermeier,  2019). Mops pumilus 
roosts communally in groups that can number from a few individ-
uals to several thousand, often sharing roosts in human dwellings 
with several other synanthropic bat species (Jackson et al., 2024; 
Wilson & Mittermeier, 2019). Despite the wide geographical range 
of M. pumilus in Africa and its frequent interactions with humans 
and domestic animals (Jackson et  al.,  2024; Lunn et  al.,  2023), 
environmental factors that drive its environmental suitability 
have not been previously studied. Bat distribution is influenced 
by a variety of environmental and behavioral factors that im-
pact their movement across the landscape. For example, precip-
itation and temperature directly impact environmental suitability 
for bats via their effects on flight activity and thermoregulation 
(Voigt et al., 2011). Vegetation density and structure, along with 
water presence, can regulate prey biomass (Ober & Hayes, 2008; 
Wolbert et al., 2014). Furthermore, while short-term weather con-
ditions are important predictors of bat environmental suitability, 
long-term climatic conditions can explain local variations in bat 
distribution (Erickson & West, 2002).

Species distribution modeling can be used to identify land-
scape areas conducive to a particular wildlife species along with 
the elements that have the greatest impact on the environmental 
niche for that species (Guisan & Zimmermann, 2000). When ap-
plied to a potential zoonotic pathogen host like M. pumilus, spe-
cies distribution modeling can inform human exposure risk over 
heterogeneous landscapes. In this study, we aim to (1) identify the 
most influential environmental variables driving the spatial occur-
rence of M. pumilus; (2) use this information to project the environ-
mental suitability for M. pumilus across the county; and (3) project 
future distribution across the county under four climate projec-
tions for 2050 and 2090. This pre-emptive study creates informa-
tion that is critical for identifying areas of high overlap between 
this common synanthropic bat species and humans, which may 
represent regions with a high risk of human exposure to emerging 
zoonotic pathogens.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

Our study was conducted in the Taita Hills and surrounding plains 
in Taita–Taveta County, southeast Kenya (Figure 1a,b). This area 
is recognized as a hotspot for emerging zoonotic disease risk 
(Allen et  al.,  2017). Previous work has identified coronaviruses 
in M. pumilus bats in the area (Waruhiu et  al., 2017). The study 
area covers an approximate area of 2700 km2, including the hills 
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(1000 km2) and surrounding plains. Taita–Taveta County is divided 
into 20 administrative districts (*wards), 15 of which extend to 
our study area. This area is characterized by high wildlife diver-
sity and habitat heterogeneity; the hills have cloud forest from 
1400 to 2200 m surrounded by lower-elevation (400–1400 m) 
grassland, woodland, semiarid shrubland, and dry savanna (Abera 
et al., 2022; Platts et al., 2011). The climate is semiarid, with an 
average annual temperature of 23°C (Autio et  al., 2021; Ogallo 
et al., 2019). Typically, there are two rainy seasons—March to May/
June and October to December—with an average annual rainfall 
of 150–600 mm in the lowlands and 800–1200 mm in the high-
lands (Autio et al., 2021; Ogallo et al., 2019). Urbanization has dra-
matically increased during recent decades in Taita–Taveta County, 
with a 700% increase in developed landcover during the past dec-
ade and a steadily increasing human population (Kenya National 
Bureau of Statistics, 2019; Nyongesa et al., 2022). Human–wildlife 
interactions have increased because of higher rates of environ-
mental loss and forest degradation brought on by altered agricul-
tural activity, accelerated climate change, and a rapidly expanding 
human population (Maeda, 2012; Munyao et al., 2020).

2.2  |  Bat occurrence data

Occurrence data included a total of 84 presence locations for M. 
pumilus recorded between 2016 and 2023. Most M. pumilus were 
captured from houses (N = 79), with a few captured flying over 
waterbodies (N = 5). For bat trapping, we used single-, double-, 
and triple-high mist nets and hand nets in buildings and at natu-
ral flyways over water sources to capture bats (Lunn et al., 2023). 
Buildings that were used by bats were identified through 
house-to-house surveys and community conversations (Jackson 
et  al.,  2024). Captured bats were identified to species level in 

the field using existing keys for bats in East Africa (Patterson & 
Webala, 2012).

2.3  |  Predictors of bat environmental suitability

We incorporated several environmental predictors into models 
based on their known or suspected influence on bat distribu-
tions (Cooper-Bohannon et  al.,  2016; Koch et  al.,  2020; Pigott 
et  al.,  2014; Reed Hranac et  al.,  2019). Environmental data for 
the study area included precipitation, temperature, topographic, 
vegetation, and distance-based variables obtained from satellite 
imagery, GIS layers, and interpolated data (Table S1). As some en-
vironmental data had a higher resolution (20 m) than the other lay-
ers, we downscaled bioclimatic data (~1000 m) acquired from the 
WorldClim database (version 2.1; Fick & Hijmans, 2017). We used 
geographic weighted regression for grid downscaling in QGIS (ver-
sion 3.28.4) with the Saga Next Generation plug-in to downscale 
(100 m resolution) the environmental data by using the digital el-
evation model. We also incorporated 19 bioclimatic variables into 
the models to compare current and future environmental suitabil-
ity for M. pumilus.

To predict future environmental suitability for M. pumilus, we 
used the following four CMIP6 general circulation models (GCMs): 
EC-Earth3-Veg, HadGEM3-GC31-LL, IPSL-CM6A-LR, and MRI-
ESM2-0. We selected these GCMs, as they vary in climate sensitivity 
(Lange, 2021) and can capture extreme seasonal precipitation indi-
ces, particularly in East Africa (Akinsanola et al., 2021). In conjunc-
tion with each GCM scenario, we used two shared socioeconomic 
pathways (SSPs): 2.45 (medium change) and 5.85 (high change). 
The SSP2.45 scenario represents the medium pathway for future 
greenhouse gas emissions, with a temperature rise of 3°C. It follows 
historical growth trends in development and reduced fossil-fuel 

F I G U R E  1 Study area in the Taita Hills and surrounding plains in Taita–Taveta County, southeast Kenya (a, b). Map indicating Mops pumilus 
occurrence data with 81 presence points across the study area and different vegetation types (b).
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dependence, global population growth is moderate, and environ-
mental systems are facing certain degradation (Riahi et  al., 2017; 
Tebaldi et  al.,  2021). The SSP5.85 scenario represents the upper 
boundary of future predictions, with a temperature rise of 5°C by 
2100. It is based on socioeconomic progress, reduced global inequal-
ity, a growing world economy, strong reliance on fossil fuels, and 
intensive development and energy consumption (Riahi et al., 2017; 
Tebaldi et al., 2021). Lastly, future environmental suitability for M. 
pumilus was predicted based on bioclimatic data for 2041–2060 and 
2081–2100 using the mean value of the climate variable for each 
period (2050 and 2090).

2.4  |  Data preparation and analysis

To reduce spatial autocorrelation, bat occurrence data were spatially 
thinned using R package Wallace (Kass et al., 2018) with the spThin ap-
proach. With spatial autocorrelation, data or residuals are correlated 
with themselves rather than being independent (Drew et  al., 2011) 
and may inflate the effective sample size and bias parameter esti-
mates. For M. pumilus observation data, we used a spatial thinning 
buffer of 100 m to incorporate the highest possible number of pres-
ences. After data thinning, M. pumilus data consisted of 81 presence 
points (Figure 1b). To model the environmental niche, we generated 
three pseudoabsence points per presence point via the random strat-
egy (N = 243) across 10 replication sets, as recommended (Barbet-
Massin et al., 2012; Thuiller et al., 2023). In the final models, presence 
and pseudoabsence points were equally weighted (Barbet-Massin 
et al., 2012). We used the biomod2 platform in R (version 3.4.6; Thuiller 
et al., 2023) to create species distribution models (SDMs) to identify 
areas with suitable environmental conditions for M. pumilus.

All geospatial datasets, including environmental and bioclimatic 
data, were processed in Esri ArcGIS (version 10.8; Environmental 
Systems Research Institute (ESRI), 2023) or QGIS (version 3.28.4) 
and were set to the same spatial extent, geographic coordinate 
system (Arc 1960 UTM Zone 37S, EPSG:21037), and resolution 
(100 × 100 m). Multicollinearity of the variables was investigated 
using variance inflation factors (VIFs), as implemented in R package 
usdm (Belsley et al., 1980; Naimi, 2017). Correlated variables were 
excluded in a stepwise procedure using a commonly applied thresh-
old value of 10 (Chatterjee & Hadi, 2013; Sulaiman et al., 2019); 9 
out of 24 variables were included in the final modeling analysis to 
predict current environmental suitability for M. pumilus (Table S1). 
For current and future projections including only climatic data, 6 out 
of 19 bioclimatic variables were included in the final analysis after 
reducing multicollinearity (Table S1).

The following eight predictive modeling techniques were 
employed in our ensemble approach: generalized linear model 
(GLM) (McCullagh,  1989), generalized additive model (GAM) 
(Hastie, 1990), classification tree analysis (CTA) (Breiman, 1984), ar-
tificial neural networks (ANN) (Ripley, 1996), multivariate adaptive 
regression splines (MARS) (Friedman, 1991), generalized boosting 
model (GBM) (Ridgeway, 1999), random forest (RF) (Breiman, 2001), 

and maximum entropy (MAXNET) (Phillips et al., 2017). Flexible dis-
criminant analysis (FDA) and surface range envelope (SRE) were 
excluded because of generally poor predictive performance (Elith 
et  al.,  2006; Zhao & Gao, 2015). The models were run using the 
default settings of biomod2 (Thuiller et al., 2023). We used a cross-
validation technique in which the thinned dataset was divided into 
two parts, one to calibrate the models (70%) and another to eval-
uate them (30%) (Guisan & Zimmermann, 2000). We repeated the 
calibration and evaluation sets 10 times for each model and pseu-
doabsence dataset (800 model evaluation runs in total). To reduce 
uncertainty related to the choice of a single modeling technique, 
we built ensemble predictions using the ensemble mean method 
(Araújo & New, 2007). This approach produces the ensemble pre-
diction by averaging predictions across the best-performing in-
dividual models (0.7 < area under the curve, AUC < 1.0) (Thuiller 
et  al.,  2023). Predictions based on ensemble mean models were 
used as an input for environmental suitability maps of M. pumilus. 
The current suitability distribution result, including only climatic 
data (Table S1), was further projected to predict the species' future 
distributions under previously mentioned GCMs (see section 2.3 
Predictors of Bat Environmental Suitability).

2.5  |  Accuracy assessment

Sensitivity (the proportion of correctly predicted presences) and spec-
ificity (the proportion of correctly predicted pseudoabsences) were 
calculated to quantify omission errors (Fielding & Bell, 1997). AUC and 
true skill statistics (TSS) (Allouche et al., 2006) were used to measure 
model ability to distinguish between presence and pseudoabsence 
classes. AUC scores range from 0 to 1, with 0.5 being the threshold for 
predictions better than random (Fielding & Bell, 1997), and >0.7 being 
an acceptable threshold for predictions (Morán-Ordóñez et al., 2017). 
TSS scores range from −1 to 1, where 1 indicates a perfect ability to 
distinguish suitable habitats from unsuitable ones, while values of 
zero or less indicate a performance no better than random (Allouche 
et al., 2006). Variable importance, referred to here as the relative per-
cent contribution of a predictor to model outputs, was extracted from 
the biomod2 output, with higher values indicating higher influence on 
the ensemble mean model (Thuiller et al., 2023). Partial dependency 
plots were generated showing the average effect of each covariate 
on the overall response. To estimate current and future environmen-
tal suitability for M. pumilus based on climate data, we only present 
variable importance and partial dependence plots for current suitabil-
ity, as these variables mainly followed a similar importance order in 
all predicted future scenarios (N = 16). To detect changes of suitable 
areas for M. pumilus between current and future projections, we first 
classified areas as suitable or unsuitable based on threshold values 
that maximized sensitivity and specificity in each projection. We then 
calculated the percentage of suitable habitats for each projection and 
compared them to determine changes between present, 2050, and 
2090 projections. Suitability maps were first created using R software 
and were afterwards modified in ArcGIS.
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3  |  RESULTS

3.1  |  Model performance

The generated ensemble niche models for estimating current envi-
ronmental suitability for M. pumilus performed strongly (AUC = 0.95 
and TSS = 0.75; Table S2). The mean predictive performance of all 
16 future scenarios was 0.93 based on AUC (range = 0.92–0.94) and 
0.72 based on TSS (range = 0.69–0.76). Of the individual models 
used to create an ensemble niche model, the RF, GBM, and GAM 
models had the strongest performance (Figure  S1). The ensemble 
mean model identified unsuitable environments better than suitable 
environments in the current predictions (sensitivity = 80.3%, speci-
ficity = 94.7%; Table  S2). For future predictions, mean sensitivity 
based on AUC was 83.7% (range = 76.5–91.4%) and specificity was 
88.3% (range = 82.1–91.8%).

3.2  |  Predictor contributions

Our models showed that the environmental suitability of M. pumi-
lus was influenced by several environmental and bioclimatic vari-
ables (Figures 2 and 3). The highest relative contributions were by 
BIO4 = temperature seasonality (29.9%) followed by distance to river 
(24.2%), BIO18 = precipitation of warmest quarter (9.9%), normalized 
difference vegetation index, NDVI (8.9%), BIO14 = precipitation of 
driest month (8.7%), elevation (5.8%), BIO3 = isothermality (5.8%), 
and wind speed (4.0%). Topographic wetness index (TWI, 2.8%) was 
the least important predictor among the models.

Locations with relatively low temperature variation within a year 
(1.55–1.66°C), high precipitation during the driest month (>16 mm), 

low levels of temperature variability within an average month rel-
ative to the year (67–68.5%), a high TWI (>4), sparse vegetation 
(0.1 < NDVI < 0.3), and elevations between 900 and 1500 m had 
higher environmental suitability for M. pumilus (Figure  3). Longer 
distance to rivers (>500 m), high precipitation during the warmest 
quarter (>160 mm), and high wind speed (>1.3 m s−1) were negatively 
associated with M. pumilus suitability (Figure 3).

3.3  |  Current environmental suitability for 
Mops pumilus

Our models estimate high levels of environmental suitability for M. 
pumilus in current environmental settings across large areas in the 
Taita Hills and surrounding plains in Taita–Taveta County (Figure 4). 
Areas with highest suitability for M. pumilus were found in 12 of the 
15 wards located in the study area, with highest suitability predicted 
in savanna, grassland, shrubland, and developed low-elevation re-
gions. Areas at elevations lower than 750 m and greater than 1500 m 
or areas with minimal development were estimated to have low to 
moderate suitability for M. pumilus.

3.4  |  Future environmental suitability for 
Mops pumilus

Our models predicted changes in the environmental suitability for M. 
pumilus in the Taita Hills and surrounding plains by 2050 (Figure 5). 
Increases in environmental suitability are likely across the study 
area, especially in mid- to high-elevation areas and in undisturbed 
savanna, shrubland, and woodland in the southern reaches of the 

F I G U R E  2 Relative contributions of environmental variables for estimating current environmental suitability for Mops pumilus by the 
ensemble mean model. BIO14, precipitation of the driest month; BIO18, precipitation of the warmest quarter; BIO3, isothermality; BIO4, 
temperature seasonality; DITORI, distance to river; NDVI, normalized difference vegetation index; TWI, topographic wetness index.
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Taita Hills and surrounding plains. Our models showed minimal con-
traction (−0.7%) or no contraction of environmental suitability in any 
administrative ward by 2050. The EC-Earth3-Veg and MRI-ESM2-0 
models with SSP2.45 scenarios yielded the largest increases in envi-
ronmental suitability (6.3–10.1%) for M. pumilus by 2050.

In contrast, the considered GCMs, excluding HadGEM3-
GC31-LL, predicted a slightly contracting distribution (−0.5–5.0%) 
for M. pumilus in all administrative wards between 2050 and 2090 
(Figures  5 and 6). The EC-Earth3-Veg, IPSL-CM6A-LR, and MRI-
ESM2-0 models, with low and medium change scenarios, predicted 
suitability in low-elevation savanna, shrubland, and woodland to de-
crease substantially, with high environmental suitability for M. pumi-
lus largely concentrated in mid-to high-elevation areas.

4  |  DISCUSSION

Here, for the first time, we developed SDMs to determine the driv-
ers for environmental suitability for M. pumilus, to identify hotspot 

areas and to model changes in suitable habitats under future scenar-
ios. Our projections indicate that M. pumilus inhabits large portions 
of the Taita Hills and surrounding plains, including hotspot areas 
of suitability coinciding with human development and agriculture. 
Future predictions demonstrate how these areas will change in the 
study area—first, the localized range of M. pumilus will increase in 
the short term, by 2050, but thereafter it will decrease and become 
more fragmented when the species' range contracts—as expected in 
the long term.

Our study shows that the current environmental suitability for 
M. pumilus was associated with temperature, precipitation, and 
topographic variables, vegetation cover, and waterway presence, 
which is mainly congruent with studies of other bat species (Koch 
et al., 2020; Lee et al., 2012). The results indicate that M. pumi-
lus is sensitive to changes in temperature seasonality. High tem-
perature variation throughout the year has been found to impact 
the basal metabolic rate of other bat species (Downs et al., 2012). 
Additionally, extremely high or low temperatures over the course 
of a year may affect the physiological tolerance of the species, 

F I G U R E  3 Partial dependency plots for estimating current environmental suitability for Mops pumilus produced by the ensemble mean 
model. BIO14, precipitation of the driest month; BIO18, precipitation of the warmest quarter; BIO3, isothermality; BIO4, temperature 
seasonality; NDVI, normalized difference vegetation index; TWI, topographic wetness index.
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for example by lowering net primary productivity and thereby re-
ducing the availability of insect prey (Schloss et al., 1999; Vinson 
& Hawkins, 2003). Our findings also demonstrate that locations 
with shorter distances to rivers and higher precipitation during the 
driest month were associated with higher suitability for M. pum-
ilus. Water is a limiting resource in semiarid climates like that of 
southeast Kenya, and bats may use waterbodies, such as rivers, 
for hydration (Katunzi et al., 2021; Rainho & Palmeirim, 2011). The 
presence of waterbodies and higher precipitation also increase 
insect biomass, which is crucial for bat reproduction (Nurul-Ain 
et al., 2017). Our findings are also consistent with results from pre-
vious studies in other African countries that identified temperature 
and precipitation variables as key drivers of bat habitat suitabil-
ity for other bat species and families (Arumoogum et  al., 2019; 
Cooper-Bohannon et al., 2016; Schoeman et al., 2013). However, 
excessively high precipitation levels increase their flight metabo-
lism, which in turn decreases their body mass (Davy et al., 2022). 
Additionally, locations with high suitability for M. pumilus were as-
sociated with sparse vegetation. This is evident, as synanthropic 
bats roost in buildings, particularly in urban environments with 
sparse vegetation cover.

The projected suitability for M. pumilus was highest at low- to 
mid-elevation areas just south of the highest mountains of the 
Taita Hills. These areas are dominated by moderate rates of human 
development and agriculture containing several of the county's 
urban centers (Ojwang’ et al., 2017). Human population growth in 
Taita–Taveta County is steadily increasing (Kenya National Bureau 
of Statistics,  2019), and rapid urbanization creates more build-
ings, that is, roost sites for bats. Although high suitability areas 
for M. pumilus are mostly located in low- to mid-elevation areas, 
environmental conditions in higher-elevation areas in Taita–Taveta 
County may not be a limiting factor for the species, as our findings 
indicate that the suitability for M. pumilus remains high at eleva-
tions greater than 1500 m. This finding is somewhat contradictory 
to earlier studies in which M. pumilus has not been captured at 
elevations above 1400 m (Benda et al., 2019; Katunzi et al., 2021; 
Lane et al., 2022).

Future predictions show that human-dominated areas will con-
tinue to be acceptable for use by this synanthropic bat species in 
the near future, although this trend varies with time. The imme-
diate projected range expansion may be correlated with predicted 
increases in temperatures and precipitation, and the plasticity 

F I G U R E  4 Current environmental suitability for Mops pumilus presented by administrative ward in the study area in Taita–Taveta County 
by the ensemble mean method over several modeling methods.
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F I G U R E  5 Future environmental suitability for Mops pumilus in the Taita Hills and surrounding plains projected for 2050 using four 
general circulation models (GCMs) and two shared socioeconomic pathways (SSPs) based on the ensemble mean method over several 
modeling methods. The percentage change in suitable habitat between the present and future (2050) is indicated in the lower right corner of 
each panel.
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F I G U R E  6 Future environmental suitability for Mops pumilus in the Taita Hills and surrounding plains projected for 2090 using four 
general circulation models (GCMs) and two shared socioeconomic pathways (SSPs) based on the ensemble mean method over several 
modeling methods. The percentage change in suitable habitat between 2050 and 2090 is indicated in the lower right corner of each panel.
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of the thermal tolerance of M. pumilus may be beneficial as the 
climate changes in this region (Marsden et  al.,  2022). However, 
subsequent prediction scenarios for 2090 indicate a slight con-
traction of the suitability of the southern study area, where the 
environmental suitability for M. pumilus was previously highest. 
In our study, suitability for M. pumilus was negatively associated 
with temperature extremes, suggesting that the species could 
probably be impacted by global warming, as its suitable habitats 
would be reduced. At 1.5°C, 2°C, and 3°C of global warming above 
preindustrial levels, mean annual temperatures in East Africa are 
estimated to average 0.6–2.1°C warmer than the 1994–2005 av-
erage (IPCC, 2023). This temperature increase may be too extreme 
for M. pumilus to tolerate physiologically and may have negative 
impacts on the species' insect prey (Erickson & West,  2002). 
Therefore, the risk of human contact with M. pumilus may increase 
in the near future but will likely decrease as the severity of climate 
change increases.

While our models had strong predictive performance, there are 
some limitations to the interpretation of our data. Although CMIP6 
models depict improved performance in the climate simulations 
relative to earlier CMIP5 models (Ayugi et al., 2021), any long-term 
future projections are always subject to a range of assumptions and 
limitations. We have endeavored to address this by using ensem-
ble mean models, four GCMs known to capture specific features of 
East African climate with two SSPs and 800 suitability model runs 
(Akinsanola et al., 2021). The future projections for M. pumilus suit-
ability are meant to show average trends and should not be under-
stood as being predictive for specific years. High model uncertainty 
in the southwestern, southeastern, and central parts of the study 
area may be due to sampling bias, as sampling focused on building 
roosts and could not be conducted in several of the protected areas.

Here, we investigated the drivers of occurrence for M. pumilus 
and identified environmentally suitable habitats for the species 
under current and future scenarios. We studied these aspects in the 
Taita Hills and surrounding plains in southeastern Kenya, but the re-
sults are transferable to other regions in Africa that are not far from 
their geographical distance or from the core of a species' range and 
to regions with topographical variation (Rousseau & Betts, 2022). 
Here, we used high-quality occurrence data of M. pumilus instead of 
aggregated observations from big data repositories that may often 
be prone to spatial bias (Beck et al., 2013). Our findings may help 
to identify areas where potential exposure to bat-borne pathogens 
may occur and potentially allow a better estimation of where pre-
cautionary steps and preventive actions may become necessary in 
the future.

5  |  SUMMARY AND CONCLUSIONS

We have identified environmental drivers, current environmental 
suitability, and possible future scenarios for M. pumilus by utilizing 
empirical data from the Taita Hills and surrounding plains in Kenya. 
The focus area is representative of much of rural sub-Saharan Africa, 

and this is a common and widely distributed bat species that is host 
to virus groups with public health implications. Based on the results, 
we found that low variation in temperature within a year, short dis-
tance to rivers, sparse vegetation, and higher precipitation during 
the driest month drive the strongest environmental suitability for M. 
pumilus. Predicted current environmental suitability indicated great-
est suitability in low- to mid-elevation areas south of the highest 
mountains in the Taita Hills. These areas involve urban centers with 
the highest human population densities in the area and are located 
in the vicinity of rangeland and wildlife conservation areas. Most of 
the human-dominated areas are predicted to remain suitable for M. 
pumilus in the near future but to shrink slightly towards the end of 
the century. Our results may have considerable public health value 
not only in Taita–Taveta County but also in other parts of Africa 
with comparable environmental conditions. Furthermore, our find-
ings can be used to better estimate the locations where preventive 
measures will be required and to identify potential exposure sites to 
bat-borne pathogens in a landscape known for its risk of zoonotic 
disease emergence.
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