

MAASAI MARA UNIVERSITY

REGULAR UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR SECOND YEAR FIRST SEMESTER

MASTER OF SCIENCE IN ECONOMICS AND STATISTICS

 ECS 8202: MULTIVARIATE ANALYSIS
Instructions:

1. Answer questions one and any other two.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 Marks)

a) Given that $X \sim N_{3}(\mu, \Sigma)$ with

$$
\mu=\left(\begin{array}{l}
40 \\
28 \\
12
\end{array}\right) \quad \Sigma=\left(\begin{array}{ccc}
36 & -6 & -12 / 5 \\
-66 & 16 & 4 \\
-12 / 5 & 4 & 4
\end{array}\right)
$$

Find;
i. The distribution of $Y=\binom{X 1-X 3}{X 1-X 2-X 3}$ (3 marks)
ii. The correlation matrix for the data
(3 marks)
iii. The distribution of X 1 given that $\mathrm{X} 2=23$ and $\mathrm{X} 3=14$.
(3 marks)
iv. The partial correlation coefficient between X 1 and X 2 for fixed values of X3 and that of X1and X3 for the fixed values of X2.
(2 marks)
b) Use the data below for a bivariate normal distribution to test at $\alpha=0.05$ level the hypothesis $H_{0}=\left(\begin{array}{ll}17 & 15\end{array}\right)^{\prime}$ vs $H_{1} \neq\left(\begin{array}{ll}17 & 15\end{array}\right)^{\prime}$.

$$
X=\left(\begin{array}{lllllll}
15 & 13 & 12 & 15 & 17 & 10 & 16 \\
19 & 15 & 17 & 21 & 24 & 20 & 17
\end{array}\right)
$$

(5 marks)
c) Given that $\bar{X}_{1}=\left(\begin{array}{lll}33 & 12 & 10\end{array}\right)^{\prime}$ comes from population I and
$\bar{X}_{2}=\left(\begin{array}{lll}27 & 19 & 8\end{array}\right)^{\prime}$ Comes from population II and both populations have the same sample covariance matrix.

$$
S=\left(\begin{array}{ccc}
20 & -4 & 15 \\
-4 & 16 & 0 \\
15 & 0 & 4
\end{array}\right)
$$

Use discriminant rule to classify $X=\left(\begin{array}{lll}34 & 11 & 8\end{array}\right)^{\prime}$
(5 marks)
(c) For the matrix
$\mathrm{A}=\left(\begin{array}{lll}3 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right)$
i. Could A be a covariance matrix? Explain
(2 marks)
ii. Obtain determinant of A and A^{-1}
(3 marks)
iii. Compute the spectral decomposition of A
(4 marks)

QUESTION TWO (20 Marks)

i. Observations on three responses are collected for two treatments as shown in the table below.

Treatment	1	1	1	2	2
x_{1}	12	13	8	11	10
x_{2}	19	18	14	11	15
x_{3}	8	9	7	14	12

find;
i) The matrix of sum of squares due to the treatment.
(4 marks)
ii) The matrix of residual sum of squares
(5 marks)
ii. Let random variables $\underline{x}^{\prime}=\left[x_{1}, x_{2}, x_{3}\right]$ be distributed as $N_{3}(\underline{\mu}, \Sigma)$
$\underline{\mu}=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$ and $\sum=\left[\begin{array}{lll}4 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3\end{array}\right]$
Find the following
i. Correlation matrix of \underline{x}
(2 marks)
ii. The distribution of $z=4 x_{1}-6 x_{2}+x_{3}$
(3 marks)
iii. The distribution of $z=\binom{x_{1}-x_{2}+x_{3}}{2 x_{1}+x_{2}-x_{3}}$
(3 marks)
iv. The Wilk's lambda statistic and use it to test the hypothesis that there is no treatment effects(use $\alpha=0.05$)
(3 marks)

QUESTION THREE (20 MARKS)

a) Describe briefly any two objectives of scientific investigation based on multivariate data
(2 marks)
b) Briefly explain the idea behind MANOVA stating all the assumptions.
(2 marks)
c) Distinguish between Factor Analysis and Canonical correlation Analysis
(2 marks)
d) Consider data matrix for $\mathrm{n}=3$ for a bivariate distribution

$$
\begin{gathered}
X=\left[\begin{array}{ccc}
6 & 10 & 8 \\
9 & 6 & 3
\end{array}\right] \\
\bar{X}=\left[\begin{array}{l}
8 \\
6
\end{array}\right]
\end{gathered}
$$

i. Evaluate the observed T^{2} for $\underline{\mu}_{0}^{\prime}=\left[\begin{array}{ll}9 & 5\end{array}\right]$.
(6 marks)
ii. What is the sampling distribution of T^{2} in this case?
(6 marks)

QUESTION FOUR (20 MARKS)

a) Let $X \sim N(\mu, \Sigma)$ be a trivariate normal random vector. Suppose a certain sample gave $S=\left(\begin{array}{ccc}64 & 0 & 9.6 \\ 0.6 & 16 & 0 \\ 9.6\end{array}\right)$ find
i. The eigen values of this matrix
(4 marks)
ii. The first two principal components
(4 marks)
iii. The total variance explained by the two components.
(4 marks)
b) Consider the covariance matrix

$$
\Sigma=\left[\begin{array}{cc}
1 & 4 \\
4 & 100
\end{array}\right]
$$

And the derived correlation matrix

$$
\rho=\left[\begin{array}{cc}
1 & 0.4 \\
0.4 & 100
\end{array}\right]
$$

Determine the principal components for \sum providing percentage of explained variability for each variate.
(6 marks)

QUESTION FIVE (20 Marks)

a) Suppose

$$
\Sigma \text { (covariance matrix) }=\left[\begin{array}{ccc}
4 & 1 & 2 \\
1 & 9 & -3 \\
2 & -3 & 25
\end{array}\right]
$$

Obtain standard deviation and population correlation matrix in the form of $v^{1 / 2}$ and ρ respectively.
(5 marks)
b) Given the deviation vectors

$$
e_{1}=\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right) \text { and } e_{2}=\left(\begin{array}{c}
-2 \\
0 \\
2
\end{array}\right)
$$

Compute the sample variance-covariance matrix S_{n} and the sample correlation matrix γ using geometric concept.
(3 marks)
c) The classic blue pullovers data given below is a data set consisting of 10 measurements of 4 variables. A textile shop manager is studying the sales of classic blue pullovers over 10 periods. He uses three different marketing methods and hopes to understand his sales as a fit of these variables using statistics. The variables measured are:

Sno.	Sales	Price	Advert	
Ass.Hours				
1	230	125	200	109
2	181	99	55	107
3	165	97	105	98
4	150	115	85	71
5	97	120	0	82
6	192	100	150	103
7	181	80	85	111
8	189	90	120	93
9	172	95	110	86
10	170	125	130	78

Note: $\mathbf{X}_{\mathbf{1}}$: Number of sold pullovers \mathbf{X}_{2} : Price in (EUR)
\mathbf{X}_{3} : Advertisement costs in local newspapers (in EUR)
\mathbf{X}_{4} : Presence of a sales assistant (in hours per period)
i. Calculate the vector of the means for the four variables in the dataset
(4 Marks)
ii. Calculate the sample covariance matrix
(4 Marks)
iii. Calculate the sample correlation matrix
(4 Marks)

END//=

