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EcoHealth reframing 
of disease monitoring
Decade-old (1) and recent warnings for 

coronaviruses with zoonotic epidemic 

potential (2) could have prevented the 

emergence of coronavirus disease 2019 

(COVID-19) (3). We therefore agree with 

Watsa and colleagues (“Rigorous wildlife 

disease surveillance,” Perspective, 10 July, 

p. 145) that wildlife biosurveillance should 

increase. However, representing animals 

as a threat to humans through disease 

transmission leads to ill-conceived reac-

tive policies (4). A perspective (5) in which 

animals and humans share similar risks of 

pathogens and infections, making animals 

relevant disease models and sentinels, 

would be more effective. Clarifying the con-

nection between animal and human health 

could increase public support for research 

seeking to understand host-switching in 

animals, such as the study of virus  evolution 

(6), interactions in pathogen communities 

(7), and pathogen discovery (8). 

A shared-risk perspective on emerg-

ing infectious diseases mirrors the field 

of EcoHealth, which explores the links 

between ecosystem, animal, and human 

health. Such strategies place value in 

healthy ecosystems through an integrative 
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approach that considers both pathogen 

biodiversity and social-ecological drivers 

(9). Prevention based on understanding 

the transmission of pathogens through 

EcoHealth-based emerging infectious 

disease surveillance is a promising avenue 

for sustainability science, orders of magni-

tude cheaper than mitigation in response 

to a transfer to human hosts (10), and less 

intrusive than current crisis responses.
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 Build international 
biorepository capacity
In their Perspective “Rigorous wildlife 

disease surveillance” (10 July, p. 145), M. 

Watsa et al. underscore the value of One 

Health approaches to stimulate integration 

Disease transmission can occur at live animal markets, but zoonotic disease research could benefit from an emphasis on humans’ and animals’ shared risk of infection.
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across currently siloed efforts in zoo-

notic research and mitigation. To achieve 

comprehensive decentralized pathogen 

surveillance, there is an urgent need to 

develop environmental and biodiversity 

infrastructure in biodiverse countries 

experiencing high rates of habitat 

conversion, wildlife trafficking, and 

human-wildlife interactions. 

Approximately one-third of One 

Health networks lack an environmental 

component, fewer than half are active 

in wildlife surveillance, and almost 

none is led by developing countries (1). 

International support for development 

of natural history museums with frozen 

vertebrate tissue collections remains a 

key component missing from the One 

Health equation. Most pathogens causing 

severe outbreaks in humans are zoonotic 

in origin (2); thus, understanding their 

evolution and that of their wild animal 

hosts is imperative. 

As was the case for coronavirus disease 

2019 (COVID-19) (3), identifying wild 

animal reservoirs can be challenging 

when biorepositories are lacking (4). In 

most countries, natural history biore-

positories remain poorly supported and 

largely disconnected from public health 

initiatives. For example, most studies of 

bat coronaviruses to date (5), including 

the PREDICT animal surveys discussed 

in Watsa et al., did not preserve host 

specimens or tissues, thus limiting the 

potential for molecular host identification 

or replication and extension of the science 

(6). Emerging infectious disease response 

hinges on sampling depth across space, 

time, and taxonomy, the very sampling 

enabled by museum biorepositories. 

As primary biological infrastructure, 

in-country development of museum col-

lections that follow best practices (7), with 

specimen data freely available through 

the internet, should be an interna-

tional imperative (8) for effective global 

surveillance and mitigation of emerging 

infectious diseases. 
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Response

We agree with Vanhove et al. that wildlife 

conservation and emerging infectious 

disease screening are two sides of the 

same coin. Wildlife and humans can 

be vulnerable to spillover events by the 

same pathogen. For example, respiratory 

diseases (1) and Ebola virus (2) outbreaks 

have occurred simultaneously in great 

apes and humans. Pathogens also affect 

biogeographical species range expan-

sions, contractions, and extinctions (3). 

Biosurveillance efforts should reflect that 

health risks are shared by humans and 

wildlife, a central tenet of the One Health 

framework (4). As Vanhove et al. point 

out, wildlife can serve as the source for 

preventive solutions that mitigate spill-

over risks into humans and animals. 

A shared risk perspective could also 

combat the narratives that portray animals 

as dangerous pests or disposable commodi-

ties that endanger human health (5), as 

in the case of bats (6), many of which are 

likely not hosts for coronaviruses such as 

severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2) (7). In addition to 

emphasizing shared risk, such misinforma-

tion can be countered with well-researched 

messaging following a zoonotic outbreak. 

Conservation social science has honed a 

suite of tools to identify the  often unpre-

dictable human motivations behind (8), 

and the possible negative consequences of, 

such communications (9). 

Colella et al. suggest that surveillance 

efforts should include natural history col-

lections. Some natural history museums 

and zoos archive biobanked specimens, 

cryopreserved viable cell cultures, disease 

specimen banks, and histopathology 

samples, but this highly effective practice 

(10) is limited by high costs. We agree 

that devoting funding toward biodiver-

sity banking within countries at high 

risk for emerging infectious diseases 

would improve conservation outcomes. 

Taxonomically diverse biobanked tissues 

and live cell cultures could expand studies 

of host-pathogen relationships, clarify-

ing host range or affected tissues and 

providing in vitro systems for infectivity 

and pathogenicity investigations. Such 

collections could allow drug develop-

ment for humans to expand beyond just 

a few animal laboratory models, given 

that relatively well-studied viruses such 

as SARS-CoV-2 are potentially broadly 

infectious across taxonomic orders (11). 

Comparative genomics and transcrip-

tomics among nonmodel species are 

used infrequently in biomedical research 

programs but hold great potential for 

prioritizing species and gene targets with 

alternative host defense mechanisms for 

laboratory study (12). 
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