

# MAASAI MARA UNIVERSITY 

REGULAR UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR YEAR II SEMESTER II SCHOOL OF MATHEMATICAL AND PHYSICAL SCIENCES BACHELOR OF SCIENCE
COURSE CODE:STA 2217 COURSE TITLE: MATHEMATICAL STATISTICS II
DATE: TIME:
INSTRUCTIONS TO CANDIDATES

1. Answer Question ONE and any other TWO questions.
2. All Examination Rules Apply.

## QUESTION ONE (30 MARKS)

a) (i) Define the term order statistics.
(ii) Let $X_{1}, X_{2}$ be a random sample from a distribution with density function.
$f(x)=e^{-x}, 0<x<\infty$
What is the density of $\mathrm{Y}=\min \left\{X_{1}, X_{2}\right\}$.
(3mks)
(iii) Consider 2 independent and identically distributed random variables $X$ and $Y$ whose pdfs are;
$f(x)=6 x(1-x), 0<x<1 \quad$ and
$f(y)=3 y^{2}, 0<y<1 \quad$ respectively.
Find the pdf of $Z=X Y$.
b) The bivariate probability distribution of the random variables $X$ and $Y$ is summarized in the following table.

| Y |  |  |  |  |  |  0 1 2 3 <br>  $\mathbf{0}$ k 6 k 9 k <br> 1 8 k 18 k 12 k 2 k <br> 2 k 6 k 9 k 4 k |  |
| :--- | :--- | :--- | ---: | ---: | :---: | :---: | :---: |

(i) Find $k$.
(ii) Obtain the marginal distributions of $X$ and $Y$.
(iii) Find the conditional distribution of $X$ given $Y=2$.
(iv) State with a reason whether or not $X$ and $Y$ are independent.
c) The daily number of road traffic accidents, $Y$, in a certain town can be modelled by a Poisson distribution which has probability mass function.
$P(Y=k)=\frac{e^{-\lambda} \lambda^{k}}{k!}, k=0,1,2, \ldots ; \lambda>0$
(i) Show that the probability generating function (pgf) of $Y$ is $e^{-\lambda(1-t)}$.
(ii) Use the pgf to show that $\mathrm{E}(Y)=\operatorname{Var}(Y)=\lambda$.

## QUESTION TWO (20 MARKS)

(a) The joint probability density function of the random variables $X$ and $Y$.

$$
\left.f(x, y)=\frac{1}{2 \pi} \exp \left\{-\frac{1}{4}(x-1)^{2}-\left(y-\frac{1}{4}\right\}(1+x)\right)^{2}\right\},-\infty<x, y<\infty
$$

(i) Use integration to show that $X$ has the normal distribution with mean 1 and variance 2 .
(7mks)
(ii) Use integration to show that the moment generating function of $X$ is $M_{X}(t)=\exp \left\{t+\mathrm{t}^{2}\right\}$
(iii) Use the moment generating function to find $E\left(X^{3}\right)$.

## QUESTION THREE (20 MARKS)

a) Define the terms probability generating function (pgf) and the moment generating function (mgf) of a random variable $X$ and give the relationship between these two functions.
b) The random variable $X$ has the binomial distribution with parameters $n(n>3)$ and $p(0<p<1)$.
(i) Show that the probability generating function of $X$ is;

$$
\pi t=(p t+1-p)^{n},-\infty<t<\infty
$$

(ii) Use (i) to show that $E(X)=n p$ and $\operatorname{Var}(X)=n p(1-p)$.
(iii) Find $E\left(X^{2}\right)$.
(iv)Now suppose that $X_{1}, X_{2}, \ldots, X_{m}$ are independent random variables and $X_{i}$ has the binomial distribution with parameters $n$ and $p$ for $i=1,2, \ldots, m$. Let $Y=\sum_{i=1}^{m} X_{i}$. Find the pgf of $Y$, and hence deduce the distribution of $Y$.

## QUESTION FOUR (20 MARKS)

a) Suppose that $X_{1} \sim B\left(n_{1}, p\right)$ and $X_{2} \sim B\left(n_{2}, p\right)$ independently. Find the probability function of $Y=X_{1}+X_{2}$
b) Consider a random vector with mean $\mu=\left(\begin{array}{l}3 \\ 1 \\ 5\end{array}\right)$ and $\sum=\left(\begin{array}{ccc}3 & -\frac{3}{2} & 0 \\ -\frac{3}{2} & 1 & \frac{1}{2} \\ 0 & \frac{1}{2} & 1\end{array}\right)$.

Find the mean vector and variance of the linear combination

$$
\begin{aligned}
& Z_{1}=2 X_{1}+2 X_{2}-X_{3} \\
& Z_{2}=X_{1}-X_{2}+3 X_{3}
\end{aligned}
$$

c) Suppose that $\sum$ is a $4 \times 4$ covariance matrix of a random vector $\underline{X}=\left(\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right)$. Partition $\underline{X}$ such that
(i) $\underline{X}_{1}=\binom{X_{1}}{X_{2}}$ and $\underline{X}_{2}=\binom{X_{3}}{X_{4}}$
(ii) $\underline{X}_{1}=\binom{X_{2}}{X_{3}}$ and $\underline{X}_{2}=\binom{X_{4}}{X_{1}}$

## QUESTION FIVE (20 MARKS)

a) Derive the probability density function of a random variable $X$ that follows a tdistribution.
(10 marks)
b) Derive the probability density function of a random variable $X$ that follows an Fdistribution.
(10 marks)

