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Abstract

We investigate a simple HIV/AIDS epidemic model in a heterosex-
ual population by by modifying a Susceptible-Infective-Removed (SIR)
model. The model considers sexual transmission of HIV where individ-
uals are being recruited into sexually matured age group at a constant
rate and incorporates time lags for one to become infective and the other
to become fully blown. A complete qualitative analysis of the model,
including the boundedness and positivity of the solutions, local stability
of the equilibrium points is done. We applly the next generation matrix
to determine the disease reproduction number Ry. The Model is shown
to be completely determined by the reproduction number. The model
is numerically analysed to asses the effects of the delay on the dynamics
of HIV/AIDS and the demographic impact of the epidemic using the
demographic and epidemiological parameters for Kenya.
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1 Introduction

Before getting into the mathematical model, it is important to understand the
clinical stages of the HIV/AIDS progression. This will help us justify the case
of developing a model with two time delays.

HIV undergoes a number of stages to culminate to AIDS. It follows three
stages that we now state. After a primary infection, the HIV enters the body
system. The immune system initiates a response to fight the virus (intruder).
HIV is considered to have a high replication rate (see in [2]), hence making
the viral load to grow faster than the immune system response. This period
lasts for a number of weeks before the immune system recovers and starts to
suppress the amount of virus present. Most of the clinical tests at this stage
cannot detect the presence of the virus in the body system. Hence it requires
some time delay, say 7 > 0, for it to be detectable; that is, for an infected
individual to become infective/infectious.

After the initial response by the immune system, a viral load “set point”is
reached, with HIV replicating at a constant level. This period lasts a number
of years without any outward-observable change on the patient’s health. The
numbers of C'D4" T-cells are slowly depleted. The introduction of drug ther-
apy means the viral load count can be reduced significantly. In other patients,
continual administration of therapy decreases the viral load below detectable
levels (as observed in [12]). Thus there is a time lag, 7 > 0, that is required
for an infective individual to progress from Infective to become fully blown
with AIDS symptoms.

There is abundant literature on the the mathematical models of the trans-
mission dynamics of HIV/AIDS in populations (see for instance in [1], [2], [8],
[11], [12]). Most of these works use compartment models and a sytem of Or-
dinary Differential Equations to describe the epidemic dynamics. Another set
of models that is close to what we wish to develope, uses a system of Delay
Differential Equations to describe the dynamics of the compartment model.
Although time delays have been incorporated in some of the models (such as
in [4], [6], [8], [13]), very little attention has been given to the models that
consider the following delays: time for an individual to become infective of
the HIV (window period), and the time for one to become fully blown (AIDS).
Hence, the formulation of the model in this paper is similar to that proposed by
Luboobi et al. [8], but with the inclusion of a second time delay. We develop
a model that sub-divides a population in a clinical set up into; Susceptible
(uninfected) individuals, Infective individuals, and fully blown (AIDS) indi-
viduals. We then incorporate discrete time delays, say 7,7 > 0, to represent
the time it takes for an individual to become infectious, and to become fully
blown (AIDS) respectively. This is incorporated into the model to describe
the progression of the disease.
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In §2 we present the HIV/AIDS model and state and proof basic proper-
ties that the model has to satisfy for it to be consistent with real biological
conditions. In §3, sufficient conditions for local stability of long-term solu-
tions are stated and proved. In §4 we present the numerical simulations of
the HIV/AIDS model to asses the effects of the delay on the dynamics of
HIV/AIDS and the demographic impact of the epidemic. Finally, in §5 we
present the conclusion and recommendation for further research.

2 The Model

We consider a heterosexual population that can be divided into three com-
partments. Let sexually mature susceptibles at time ¢ > 0 be denotes by S(t).
This is the number of the individuals that are not yet infected but may, if
exposed to HIV. Let I(t) denote the number of individuals at a time ¢ who
are already infected with HIV and are capable of transmitting the virus. The
Variable A(t) will represent the number of individuals who have developed full
blown AIDS symptoms at a time ¢t. At this stage, the HIV infected individual
has progressed to AIDS.
Other parameters are defined as follows:

B:- Recruitment rate of susceptibles into a sexeually active population.
w:- The AIDS-non related mortality rates per capita; that is, natural deaths.

71:- The time taken for an individual to become infectious after being in
contact with an infected individual.

T9:- The time taken for infected individuals to become fully blown after be-
coming infectious.

d:- The rate at which AIDS patients are dying due to AIDS causes.
v:- The rate at which HIV infected individuals(infective) progress to AIDS.
C':- The rate at which one changes (acquires new) sexual partners.

(:- The transmission probability; that is, the probability of getting infected
from a randomly chosen partner.

We assume that each individual that is susceptible randomly and uniformly
draws a person from the population. If the individual chosen is infectious, the
susceptible individual is assumed to get the virus. After a time lag, 71, the in-
dividual when tested will be considered infectious. Without drug intervention,
an infected individual will then progress to fully blown after a time m > 0.
Each full blown individual remains full blown till death. We shall also make
the following assumptions:
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(i) The recruitment into the population of study (sexually mature adults)
is mainly by birth, with all, recruits assumed susceptible.

(ii) An individual once infected becomes and remains infective until death.

iii) The population under study is homogeneous; that is, there is uniform
g
mixing.

(iv) The force of infection depends on the number of infective in the popula-
tion and the product B%, where, N = S(t) + I(t) + A(t).

(v) The full blown AIDS individuals are no longer a threat in the spread
of the epidemic as they are easily recognized in the population; that is,
they do not participate in the transmission dynamics.

The susceptible population is assumed to be recruited into the compart-
ment of Susceptibles by birth at the rate given by B, while the population
can decrease due to natural deaths or infection as a result of interaction with
infected individuals in compartment of infectives. Infected individuals may die
due to natural death or progress to compartment of fully blown individuals.
After progression to the compartment of fully blown, individuals are removed
from this compartment due to natural deaths or disease induced deaths. The
latter descriptions of the disease dynamics can be represented in the following
diagram.

BC/N

Figure 1: A schematic diagram of the disease progression.
The dynamics described has been represented mathematically by the equa-
tions

o SCIDS ()
Sit) = B—Ms(t)—W,
i) = B - e,

At) = vI(t) — (d+ p)A(t). (1)
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The system of equations in Equation(1) is overly simplistic. It assumes that
cause and effect are instanteneous. This is not the case in a normal clinical
set up. An individual after being in contact with an infected individual, takes
some time lag, say 7y, to be clinically infective. Likewise, an infected individual
takes sometime say, 7, to become fully blown. These dynamics of the disease
leads to the modification of Equation (1) to yield

50 = B st - g
i) = P ),
Alt) = vI(t—7) — (d+ p)A(t). (2)

Let 7 = max{r,7},and C := C([—7,0],R%), p(0) := (5(0),1(0),A(0)) 0 €
[—7,0]; ¢ € C, with the norm of ¢ defined as || ¢ ||= sup_,<s<o | (0) | where
| - | is a norm in R®. The initial condition for Equation (2) is

p(0) = (5(6), 1(6), A9)), (3)

where S(0) > 0,1(0) > 0, and A(#) > 0V 0 € [—7,0]. Equation (2) subject to
(3), has a unique solution, see for instance [7].

2.1 Basic properties

We need to show, for biological reasons, that the solution to Equation(1) sub-
ject to p(0) is positive and bounded.

2.1.1 The invariant region

Since Equation (2) describes a human population, we need to show that the
solution will be positive for all ¢ > 0. Hence Equation (2) will be analyzed in
a suitable feasible region I' defined thus:

:={(Sk),I(t),Al) eR, xCxC:S{t)+1I(t)+AF) <=} (4

= |

In other words, with given non negative initial data, the solution of Equation
(2) is bounded and remains positive for all ¢ > 0 in the region I". We thus
state Lemma 2.1.

Lemma 2.1. The feasible region I' with initial conditions ¢(0) is positively
invariant with respect to Equation (2).
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Proof. Adding all the three equations in Equation (2) we have;

(S(H)+I(t)+At) = B—pu(SE) +I(t)+A(t)) - BC(I(t)S(t) It —m)S(t - 7'1))

N(t) N(t — 7'1)
—v(I(t) — I(t — 1)) — dA(t),
< 5 500+ 10+ A — (1050 TSt
—v(I(t) = I(t = 72)). o
For any increasing population growth, we have;

[(]t\;f;gt) I ;\;(—?f(;)_ 1) > 0,and I(t) — I(t — 1) > 0.

Thus, Equation (5), becomes;
(S(t)+1(t)+At) < B—pu(SEt)+1(t)+A®)) (6)

and by the Variations-of-constants formula, we have;

lim sup(S(t) + 1(t) + A(t)) < %

t— 00

Therefore (S(t),I(t), A(t)) is ultimately bounded in Ry x C' x C. O

2.1.2 Positivity of solutions

We now show that all the state variables in Equation (2) will remain non
negative so that the solutions of the model with positive initial conditions will
remain positive for all ¢ > 0.

Lemma 2.2. For Equation (2), with initial conditions in the region T', the
solution (S(t),1(t), A(t)) is non-negative for all t > 0.

Proof. We have to prove that S(t) > 0, I(t) > 0, and A(t) > 0. Considering
the first equation of Equation (2), we have

$(t) = B — (ﬁ]%(;) ) > - (5](;@(;) +)S(t) (7)
resulting in
S(t) > B df} > 0.

For the second equation of Equatlon , We have

BCI(t —1)S(t — 7'1)

—(+pIt) > —(v+p)t) (8)
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which on integration we have

() > 1(0) exp [—/0 (v-+ wie] 0.
Lastly, we have the third Equation of (2) as
A(t) = vI(t =) = (d+ pA(t) > —(d + p) A(t) 9)

which on integration we have

A(t) > A(0) exp [— /Ot(d+ u)dg} > 0.

Hence all solutions of Equation (2) are non-ngative for all ¢ > 0 and thus
epidemiologically well posed in the region I'. O

2.1.3 The Basic Reproduction Number R,

The Reproduction number R, is the average number of secondary infections
due to a single infectious individual introduced in a fully susceptible popula-
tion. The constant Ry is determined by the method of next generation matrix
see for instance [5]. From Equation(2) we let

B(t) = [%’Zf“ﬁ, and W(t) = [(u + )I(1)) (10)

where @ and ¥ are the transmission and transition matrices respectively. Since
I(t) is the cause for new infections, we differentiate ® and ¥ with respect to
I(t) and ignore higher order terms to obtain

dd CS(t dv
F::E:ﬁN(t())’ and VI:E:(,LL-FV). (11)

The reproduction number Ry is then given by Ry = p(FV '), as described in
5], is the spectral radius of the matrix (F'V~!). Hence,

3CS

Ry =p(FV™!) = Nt )

(12)

3 Stability analysis

For long term solutions, we need to determine equilibriuum solutions of Equa-
tion(2). The following are equilibrium solutions

(i) If S(t) = I(t) = A(t) = 0, the population is wiped out.
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(ii) When I(t) = A(t) =0, and S # 0 then S(t) = 7.

(iii) When all components of (S(t),I(t), A(t)) =: (S*,I*, A*) are nonzero,
then we have on computing that
N* B N* B N*
o Nptv) P v p

gCc 1 T u+v pC’ (d+,u)(u+1/_60

(13)

Equation (2) has two nontrivial steady states; the uninfected steady state
Ey = (%,0,0) and the infected steady state £y = (S*, I*, A*) where S*, I*, A*
are as defined in Equation (13). At FEj, the infectives are persistent with
a constant force I* > 0 hence the risk of the development of AIDS in the
population. To study their stability, we linearize the system about these points.
Let’s define

2(t) = S(t) — 8%, y(t) == I(t) — I*, =z(t) = A(t) — A*,  (14)

and by Taylor series expansion of Equation(2) about (S*, I*, A*) and upon
ignoring higher order terms, we obtain

gors. . BCs

i) = (et B Den) - P,
i) = D) — () + 2y ),
1) = wlt—m) — (d+ (). (15)

Equation (15) can be expressed in a matrix form as

where
—(p+ Ly K 0 0 0 0
A= 0 —(u+v) 0 , By = ﬁgf ’61(\’;5 0], By:=
0 0 —(d+p) 0 v 0
x(t) z(t —m)
Y(t):= yit) |,and Y(t—7) = ylt—7) |, i=1,2.
(%) z(t — 1)
Equation (16) is a linear system and its characteristic equation is given by
L _ogs 0
BOI"gmmih (B8 emmh (4 v) — A 0 —0.  (17)

0 ve A —(d+p) — A

o O O

R O O

), N*=S"+I"+A"

o O O
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At Ey, Equation(17) has two eigenvalues that are negative and are given by
A= —pu, A= —(d+p).
For the other eigenvalues, we consider
H(\) +D(\)e ™ =0, (18)
with 5Cs"

N*
For asymptotic stability we need Re\ < 0 for all 71 > 0.

HN =X+p+v, D) =—(

).

Theorem 3.1. For all 7, > 0, the disease free equilibrium exists and is aymp-
totically stable if the reproduction rate Ry < 1.

To prove Theorem 3.1, we use Lemma 3.2 due to Boese [3].

Lemma 3.2. For any m > 0, the roots of (18) will lie to the left of the complex
plane, if the following are satisfied:

(i) All zeros of H(\) satisfy Re\ < 0,
(1) |H(0)| = |D(0)].

Proof. Condition (i) is satisfiesd as the roots of H(\) are —(u + v) whilst at,

Eo, [H(0)| > |D(0)| would imply that Ry = o205 < 1. O

At endemic equilibrium, £y = (S*, I*, A*), Equation (17) becomes;

—(n+ ) - A 0
BOL" =mi BCS™ oM (14 v) — A 0 =0. (19)
0 ve A\ —(d+p) — A

Clearly —(d + p) is an eigenvalue. For the other eigenvalues A\, we have

H(A) + D(A\)e ™ =0, (20)
where
HQA) =N+ @pt v+ 5§f*>x+u2 + v + (u+y)ﬁ§f*
and DOy _BCS*/\ - BOSu
: e e

If the roots of Equation (20) have negative real parts, then the endemic equi-
librium is asymptotically stable. This leads us to the following Theorem;
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Theorem 3.3. For all values of 71 > 0 and Ry > u, the disease equilibrium
FE is positively bounded and asymptotically stable.

To check whether the roots of Equation(20) are negative, we use Lemma 3.2
with H(\) and D()) as defined in Equation(20).

Proof. The roots of H(\) are given by —pu — v, and —pu — ﬁCI . To prove

Condition (i) we have H(0) = pu? + uv + (1 + v) ﬂcf and D(O) ﬁi}i £ and
we require that

BT BOS*u

2 > 21
|1+ v+ (et v) = 2] = | (21)
Using I* and S* as defined in Equation (13), we get;
2 pC, B ’ ’ﬁCM N*(p+v)
22
u+uu+(,u+y)N*(M+y 50 > 3C ) (22)
that reduces to; Ry > p. O

By Lemma 2.1 and Lemma 2.2, all solutions are positive and bounded, and
by Lemma 3.2, asymptotic stability for the disease equilibrium is guaranteed
when Ry > p and is independent of the delay 7. Hence the proof.

4 Numerical Simulations

We use Matlab software to illustrate the numerical simulations describing the
theoretical results for model (2). We describe the variables and parameters
values to enable us make numerical simulations. Parameter values are hypo-
thetical.

Table: Data for the HIV/AIDS model

Variables and Parameters Initial or default values | Source
S(t) susceptible individuals 4000 Estimate
I(t) infected individuals 800 Estimate
A(t) fully blown individuals 97 Estimate
B Recruitment rate 29 per year Estimate
B Probability of getting the disease 0.011-0.95 [9],[8]
C the number of sexual partners per year 3 per year [9]
p mortality rate 0.01562 [10]
d HIV/AIDS related death rate 0.333 per year [9]
v Rate of progression to AIDS 0.125 per year [9]
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If Ry > 1, the HIV/AIDS free equilibrium becomes unstable while the
endemic equilibrium F; becomes stable. Additionally, if Ry > 1, the endemic
equilibrium is asymptotically stable. In Figure 2, solutions converge to Fj.

4000

S(1)
I(t)
A)

3500

3000

2500

2000

1500

solutions S(t),I(t),A(t)

1000

500

0 10 20 30 40 50 60 70 80
time
Figure 2: Numerical solution of Equation(2) when Ry > 1.
From Figure 2, the infection persists in the population, that is, the number of
infectives in the population will increase until it attains an equilibrium Fj.

When the delay parameter 7, > 0 is large, the infectious individuals in the
population will take a longer time to be eliminated (removed) in the popula-
tion, hence increasing the force of infection leading to more infectives in the
population. This leads to an increase of infective population as numerically
shown in Figure 3.
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S(1)
I |4
At)

solutions S(t),(t),A(t)

0] 10 20 30 40 50 60 70 80
time

Figure 3: Numerical solution of Equation(2) when 7 > 0 is large.

If the delay parameter 7, is not large, the infected individuals will die out
faster i.e, infected individuals are eliminated from the population faster as the
rate at which they progress to fully blown is small. The simulation for this
case is as shown in Figure 4.

4000 T T T T T T T

S(b)
I(t)
A | |

3500

3000 A

2500 h

2000 i

1500 A

solutions S(t),I(t),A(t)

1000 h

500 T

time
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Figure 4: Numerical solution of Equation(2) when 71 > 0 is small.
Globally, if the spread of the infection is not addressed, the susceptibles
population will decrease in comparison to the infected population. This can
be illustrated by the following numerical simulation

x 10

S(t)
1)
A®t)

solutions S(t),I(t),A(t)
N

o 10 20 30 40 50 60 70 80
time

Figure 5: Numerical solution of Equation(2) if the force of infection is not reduced.

5 Conclusion

In the case where there is no delay, no infection occurs if Ry < 1. So the ideal
control strategy is the reduction of Ry to a value below 1 in order to prevent
new infections. However, when Ry > 1 the infection becomes endemic. In
the presence of delay and without any intervention programs, the longer the
delay term, especially 71, the higher the prevalence rate of the disease provided
Ry > p.

We have considered an epidemic in a single location, ignoring travel between
locations of individuals who may be infective. Modern transportation permits
the rapid transfer of infectious diseases over great distances, and an aspect
of epidemic control that has become important is the screening of travelers
who may be infective. Epidemic models which include some movement into
and out of populations can be considered. Our model also does not take into
account behavioral changes in a population when an epidemic breaks out. For
instance, when an epidemic occurs some individuals of the population will
undoubtedly avoid people rumored to be infected. In other cases, individuals
change their behaviors or adopt preventive measures to reduce the probability
that a contact will transmit infection. This may occur because of personal



1656 Adu A.M. Wasike et al.

decisions or because of government instructions. Inclusion of these effects in
an epidemic model is an important problem to be explored.
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