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The genus Myotis is nearly cosmopolitan and the second-most speciose genus of mammals, but its Afrotropical
members are few and poorly known. We analyzed phylogenetic and phylogeographic relationships of six of
the eight known Afrotropical species using Cytb and sequences from four nuclear introns. Using Bayesian
and maximum-likelihood approaches to generate single-locus, concatenated, and species trees, we confirmed
prior evidence that the clade containing Afrotropical Myotis also contains both Palearctic and Indomalayan
members. Additionally, we demonstrate that M. bocagii is sister to the Indian Ocean species M. anjouanensis,
that this group is sister to M. tricolor and the Palearctic M. emarginatus, and find evidence suggesting that
M. welwitschii is the earliest-diverging Afrotropical species and sister to the remainder. Although M. tricolor
and M. welwitschii are both currently regarded as monotypic, both mitochondrial and nuclear data sets document
significant, largely concordant geographic structure in each. Evidence for the distinction of two lineages within
M. tricolor is particularly strong. On the other hand, geographic structure is lacking in M. bocagii, despite the
current recognition of two subspecies in that species. Additional geographic sampling (especially at or near type
localities), finer-scale sampling (especially in zones of sympatry), and integrative taxonomic assessments will be

needed to better document this radiation and refine its nomenclature.
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Mouse-eared bats, genus Myotis, are the only terrestrial
mammals to attain a nearly cosmopolitan distribution inde-
pendently of humans. In terms of species richness, Myotis
(with 133 species) ranks second among living mammals
only to the white-toothed shrews, Crocidura (with 198 spe-
cies; mammaldiversity.org—Csorba et al. 2016). However,
despite its huge range, the geographic diversification of
Myotis has been decidedly uneven: 51 species occur in the
Palearctic region, 31 in the Indomalayan region, 29 in the
Neotropical region, 24 in the Nearctic region, 11 in Wallacea,
and only eight in the Afrotropical region (mammaldiversity.
org). In fact, two of the Afrotropical species are endemic to
Madagascar and Anjouan Island (Comoros), respectively, so
that sub-Saharan portions of the globe’s second largest con-
tinent are home to only six species of Myotis. Does this re-
flect systematic undersampling of African biotas, or rampant

but undetected cryptic speciation, or perhaps even compet-
itive limitation and exclusion? Certainly, a number of other
vespertilionid genera, including Neoromicia (18 species
recognized), Scotophilus (at least 15 species), and Pipistrellus
(13 species), are all more speciose in the Afrotropics than is
Myotis (mammaldiversity.org—Demos et al. 2018).

The modest diversity of Afrotropical Myotis has attracted
little systematic attention, and there has been no recent attempt
to evaluate geographic variation of the six known continental
species. The National Center for Biotechnology Information
(GenBank) lacks any nucleotide sequences for two Afrotropical
species, Ethiopian M. morrisi and Congolese M. dieteri, and
has fewer than 50 total sequences of all loci for the other four
continental species. By comparison, the same database hosts
1,149 nucleotide sequences for the European Myotis myotis and
78,405 for the North American M. lucifugus.
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Early systematic analyses of the genus using mitochondrial
DNA sequence analysis showed that the erstwhile subgenera
of Myotis (Myotis, Selysius, and Leuconoe) represented
convergently evolved ecomorphs rather than clades; each was
found to be polyphyletic (Ruedi and Mayer 2001; see also
Ghazali et al. 2017). A subsequent analysis that included the
remaining subgenus, the endemic African Cistugo, confirmed
its monophyly but placed it well outside Myotis; that anal-
ysis recovered the remaining African species (M. welwitschii,
M. bocagii, M. tricolor, M. goudoti, and the Mediterranean
M. emarginatus) as a well-supported African clade (Stadelmann
et al. 2004). Bickham et al. (2004) also confirmed the clear dis-
tinction between Myotis and Cistugo, again based on Cytb;
employing samples of additional species of Palearctic and
Indomalayan Myotis, they recovered their lone Afrotropical
species, M. welwitschii, as sister to Asian M. formosus, with
that pair sister to M. emarginatus. A recent analysis by Ruedi
et al. (2013) with superb taxonomic sampling (including 95 op-
erational taxonomic units of Myotis sampled for Cytb and re-
combination activating gene, Rag2) confirmed the paraphyly
of Afrotropical Myotis: two Asian taxa, M. formosus and
M. rufoniger were included within the sampled African +
Mediterranean grouping. In that recent analysis, each of the six
Afrotropical taxa included was represented by a single pair of
sequences (see also Ghazali et al. 2017).

Our recent systematic surveys of bats in East Africa and
neighboring regions enable a closer examination of genetic
variation among Afrotropical Myotis. Our goal was to assess
population structure and species limits within this group and
determine whether cryptic lineages were present. We used
complete Cytb sequences and a set of four nuclear introns
(1,759 bp) that have proven informative in studies of pop-
ulation structure and species delimitation involving other
Afrotropical bat genera, including Scotophilus (Demos et al.
2018), Rhinolophus (Demos et al. In press-a), and Nycteris
(Demos et al. In press-b). Myotis species in other regions
are known to hybridize, and fuller genetic characterization
is needed to understand whether mitochondrial introgression
occurs among Afrotropical species. Despite well-differentiated
nuclear gene pools, nearly a quarter of sampled M. blythii show
mitochondrial introgression of M. myotis origin where these
two European species overlap (Berthier et al. 2006). Genome-
wide analyses show that despite mitochondrial introgression,
the five currently recognized subspecies of M. lucifugus are
paraphyletic, exchange alleles with other North American
Mpyotis species in regions of contact, and warrant recognition
as independent evolutionary lineages (Morales and Carstens
2018). The possibility of such discoveries for Afrotropical
species of Myotis has been limited by poor sampling and re-
liance on mitochondrial sequences. Therefore, we sought to
sequence both mitochondrial and nuclear loci from as many
Afrotropical Myotis populations as possible, including finer-
grained sampling in Kenya where the ranges of the three
widespread Afrotropical species overlap. Our goal was to
assess phylogeographic and phylogenetic relationships of
Afrotropical Myotis and assess the potential evolutionary

independence of any intraspecific lineages using independent
nuclear and mitochondrial data sets.

MATERIALS AND METHODS

Selection of taxa and sampling.—The majority of newly
sequenced specimens in this study (n = 50) were from bats col-
lected during field surveys using mist nets and harp traps placed
in flyways or hand-held nets at roosts. Kenya was sampled es-
pecially broadly (Fig. 1). Initial species assignments were
based on keys to the bats of East Africa (Patterson and Webala
2012). Field methods conformed to guidelines of the American
Society of Mammalogists (Sikes et al. 2016) and were approved
by the Field Museum of Natural History’s IACUC (most re-
cently 2012-003). The Kenya Wildlife Service (KWS/4001)
and the Kenya Forest Service (RESEA/1/KFS/75) issued
permits for Kenyan work. An additional 29 cytochrome-b
(Cytb) sequences for Myotis were downloaded from GenBank.
Two Afrotropical species, M. anjouanensis and M. scotti, were
each represented by only a single sequence. Because of prior
evidence for multiple Afrotropical-Asian colonization events,
analyses included a variety of Asian and Palearctic species of
Mpyotis, a member of the New World clade (M. albescens), a
more distantly related vespertilionid (Kerivoula argentata), and
a miniopterid (Miniopterus aelleni) to root relationships. In all,
78 individuals with 1-5 genes were analyzed for this study (see
Appendix I for voucher numbers, locality data, and GenBank
accession numbers).

Amplification, sequencing, and allele phasing.—Genomic
DNA was extracted from tissue samples with the Wizard SV
96 Genomic DNA Purification System (Promega Corporation,
Fitchburg, Wisconsin). Fresh specimens were sequenced for
mitochondrial Cytb, using the primer pair LGL 765F and
LGL 766R (Bickham et al. 1995; Bickham et al. 2004), and
four unlinked autosomal nuclear introns: ACOX2 intron 3
(ACOX2), COPS7A intron 4 (COPS7A), and ROGDI in-
tron 7 (ROGDI—Salicini et al. 2011); and STAT5A intron 16
(STAT5SA—Eick et al. 2005). PCR amplifications were carried
out using the same thermocycler protocols as in Demos et al.
(2018). Amplified polymerase chain reaction (PCR) products
were purified using ExoSAP-IT (Thermo Scientific, Waltham,
Massachusetts). Sequencing was carried out in both directions
on an ABI-3100 thermocycler (Applied Biosystems, Foster
City, California) at the Pritzker Laboratory for Molecular
Systematics and Evolution (FMNH).

Chromatographs were assembled and edited using
GENEIOUS PRO v.11.1.5 (Biomatters Ltd., Auckland,
New Zealand). Sequences from each locus were aligned in-
dependently using the MUSCLE algorithm (Edgar 2004)
with default settings in GENEIOUS. Sequence data from
Cytb were translated into amino acids and inspected for
insertions, deletions, and internal stop codons to exclude
paralogous sequences. Multiple gaps were included in the
alignments of the nuclear introns, but their positions were
unambiguous. Heterozygous nuclear intron alleles were sta-
tistically resolved using PHASE 2.1.1 (Stephens et al. 2001)
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Fig. 1.—Map of Afrotropical Myotis, showing the type localities for named taxa (stars), the locations of analyzed genetic samples (Cytb-only,
half-filled circles; Cyzb plus introns, closed circles), and the distributions of the three widespread species (M. bocagii, horizontal lines; M. tricolor,
lines inclined right; and M. welwitschii, lines inclined left) as mapped by IUCN Red List (Monadjem and Jacobs 2017a; Monadjem and Jacobs

2017b; Monadjem et al. 2017).

prior to their inclusion in coalescent delimitation and spe-
cies tree analyses. Default parameters were used with the
exception of adjusting the haplotype acceptance threshold to
0.70, which has been shown to reduce the number of unre-
solved genotypes without increasing false positives (Garrick
et al. 2010). Input files for PHASE were generated using the
SEQPHASE web server (Flot 2010).

Gene trees and haplotype networks.—Nucleotide substi-
tution models for Cyrb and each nuclear intron were selected
using the corrected Akaike information criterion (AICc) on the
maximum-likelihood topology estimated independently for
each model in jMODELTEST?2 (Darriba et al. 2012); the optimal
partitioning scheme and nucleotide substitution models for the
concatenated intron alignment were inferred in PartitionFinder
2 (Lanfear et al. 2016) according to the AICc under the greedy

search algorithm on CIPRES Science Gateway v.3.1 (Miller
et al. 2010). Uncorrected sequence divergences (p-distances)
within and between clades were calculated for Cyzb in MEGA
X 10.0.5 (Kumar et al. 2018). Only a single Cytb sequence each
was available for M. anjouanensis and M. scotti, so there can be
no estimate of their within-clade variation.
Maximum-likelihood estimates of gene trees for Cytb, indi-
vidual intron alignments, and a concatenated alignment of the
four introns were made using the program IQ-TREE version
1.6.0 (Nguyen et al. 2015) on the CIPRES portal. We searched
for the best-scoring ML tree algorithm (Hoang et al. 2018)
with 1,000 bootstrap and 1,000 topology replicates. Bayesian
gene tree analyses for the same alignments were carried out
with MRBAYES v.3.2.6 (Ronquist et al. 2012) on the CIPRES
portal. Two replicates were run to ensure proper mixing had
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occurred. Four Markov chains with default heating values were
conducted for 1 x 107 generations and sampled every 1,000th
generation. Stationarity was assessed using Tracer v.1.7
(Rambaut et al. 2018). The first 2,500 samples were discarded
as burn-in, and the remaining 15,000 samples were used to es-
timate posterior probability (PP) distributions. Majority-rule
consensus trees were generated for each analysis.

Network relationships of Cytb for members of the clade
containing Afrotropical Myotis were assessed in a single anal-
ysis of all haplotypes for the following species: anjouanensis,
bocagii, emarginatus, formosus, goudoti, rufoniger, scotti,
tricolor, and welwitschii. Network analysis was carried out
with the median-joining network setting in PopArt version 1.7
(Leigh and Bryant 2015). We also plotted pie charts to visu-
alize the relative frequencies and relationships of alleles in each
population.

Coalescent population delimitation and species trees.—We
carried out joint multi-locus population delimitation and spe-
cies tree estimation using the program BPP v.3.3 (Yang and
Rannala 2014; Yang 2015). BPP analyses were conducted
using well-supported clades common to the mitochondrial and
nuclear gene tree analyses. We treated clades within M. tricolor
and M. welwitschii as putatively independent lineages, effec-
tively placing a maximum on the number of lineages that could
be delimited by these analyses. BPP is known to be sensitive to
effective population size and divergence time priors in relation
to delimitation probabilities (Leaché and Fujita 2010; Yang and
Rannala 2010). Following the approach of Giarla et al. (2018),
we used two replicates for four sets of priors, representing all
combinations of deep and shallow divergence depths (t = T
[1, 10] and 7 =T [2, 2000], respectively) and large and small
relative mutation-rate-scaled effective population sizes (0 = I"
[1, 10] and 6 =T [2, 2000]: Prior Set 1 (PS1) = =T [1, 10],
6=TI11,10]; PS2 7 =T [2,2000],6 =T [1, 10]; PS3 =T
[2,2000], 0 =T [2,2000]; PS4 = =T [1, 10], 6 =T [2, 2000].
All BPP analyses were run for 10° generations using a burn-in
of 10* generations and samples recorded every 10th genera-
tion. Support for delimitation was assessed where PP > 0.95
indicates strong support for the evolutionary independence of a
given population. Our motivation in conducting “species delim-
itation” analyses was not to explicitly test for species status of
populations per se, as the multi-species coalescent cannot sta-
tistically distinguish structure associated with population isola-
tion from species boundaries (Sukumaran and Knowles 2017;
but see Leaché et al. 2018). Rather, the results from multi-locus
coalescent delimitation methods can be viewed as assessments
of statistical support for independent evolutionary lineages that
in turn require independent integrative taxonomic data (e.g.,
morphology and distribution) to establish firm species limits.
Here, we are assessing the extent to which independent nuclear
data support population structure identified in the Cyzb trees
and mitochondrial haplotype network analysis.

As in Demos et al. (2018), results from gene-tree analyses
were used to assign populations as “candidate species” for
species-tree inference in StarBEAST2 (Ogilvie et al. 2017),
an extension of BEAST v.2.5.1 (Bouckaert et al. 2014).

Species-tree analyses were carried out using the four phased
intron alignments with substitution, clock, and tree models
unlinked among loci. All loci were assigned the lognormal
relaxed-clock model using a Yule tree prior and linear with con-
stant root population size model. We ran the analysis for 2 x 108
generations in four replicate runs. The first 10% of each run was
discarded as burn-in and assembled using LOGCOMBINER
v.2.4.7 (Drummond et al. 2012) to produce a maximum clade
credibility tree in TREEANNOTATOR v.2.4.7 (Drummond
et al. 2012). We used Tracer v.1.7 (Rambaut et al. 2018) to as-
sess convergence and stationarity of model parameters based
on ESS values and examination of trace files.

All newly generated sequences were deposited in GenBank
with accession numbers MK799655-MK799811 (see also
Appendix I). Sequence alignments are available from the
authors upon request.

RESULTS

The total number of base pairs (bp) for the alignment of 77
Cythb sequences used in MEGA to calculate p-distances
ranged from 1,040 to 1,140 bp (98.6% complete alignment).
This alignment was pruned to 71 unique haplotypes for ML
and BI gene-tree analyses. An alignment of 67 in-group Cytb
sequences was used to generate the median-joining network.
The number of bp for the nuclear intron alignments used to
infer gene trees, coalescent population delimitation, and spe-
cies trees were: ACOX2, 363 bp; COPS7A, 567 bp; ROGDI,
444 bp; and STATSA, 385 bp. A total of 27 individuals were in-
cluded in the concatenated nuclear intron alignment. The best-
fit models of nucleotide substitution for each locus estimated by
JMODELTEST?2 were: 71-sequence Cytb = HKY + G; 27-se-
quence ACOX2 = HKY + G; 25-sequence COPS7A = HKY +
I; 27-sequence ROGDI = HKY; 26-sequence STATSA = HKY
+ G. The partitioning scheme and best-fit model of nucleotide
substitution for the concatenated intron alignment estimated by
PartitionFinder 2 was TIM+G under a single partition including
all four introns. Uncorrected mitochondrial p-distances for
Afrotropical Myotis clades in the Cyb alignment ranged from
0.037 to 0.170 between clades, whereas within-clade distances
evident in our sampling scheme ranged from 0.001 to 0.018
(Table 1).

Mitochondrial analyses.—The Bayesian (BI) and maximum
likelihood (ML) phylogenetic estimates recovered very similar
topologies. In the Cytb gene tree (Fig. 2), all recognized spe-
cies were strongly supported as monophyletic (i.e., maximum-
likelihood bootstrap support [BS] > 70%, Bayesian posterior
probability [PP] > 0.95), with the exception of Comoros Islands
M. anjouanensis, which is well supported as sister to Malagasy
M. goudoti in the ML tree (BS = 100%) but renders M. goudoti
paraphyletic in the BI tree. Few of the deeper nodes were well
supported. The Afrotropical species were not recovered as
monophyletic: Myotis welwitschii and East Asian M. rufoniger
were well supported as sisters (BS = 90%, PP = 1.0), to the ex-
clusion of other African species. There was partial support for
the group containing all Afrotropical forms sampled plus Asian
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Table 1.—Uncorrected mitochondrial p-distances within (bolded numbers on diagonal) and between Afrotropical Myotis clades, calculated in

MEGA X 10.0.5 (Kumar et al. 2018); Palearctic M. blythii is included for reference.
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Taxon 1 2 3 4 5 6 7 8 9 10 11
1 blythii 0.055

2 bocagii 0.168 0.018

3 emarginatus 0.139 0.148 0.005

4 formosus 0.157 0.168 0.120 0.003

5 goudoti 0.167 0.144 0.117 0.133 0.009

6 rufoniger 0.167 0.165 0.148 0.164 0.144 0.006

7 tricolor 1 0.145 0.157 0.111 0.131 0.128 0.137 0.002

8 tricolor 2 0.144 0.157 0.112 0.135 0.127 0.132 0.038 0.010

9 tricolor 3 0.147 0.155 0.108 0.130 0.121 0.137 0.037 0.037 0.001

10 welwitschii 1 0.170 0.156 0.135 0.168 0.142 0.119 0.144 0.143 0.140 0.003

11 welwitschii 2 0.168 0.163 0.131 0.168 0.149 0.126 0.139 0.141 0.142 0.043 0.007

M. rufoniger and M. formosus and Palearctic M. emarginatus
(BS =78%, PP = 0.85).

The Cytb phylogeny also showed considerable support (BS >
91%, PP > 0.97) for intraspecific clades within the three wide-
spread Afrotropical Myotis species. Two groups were recovered
within M. welwitschii, corresponding to an equatorial group
extending from Guinea into western Kenya and a group found
in eastern and southern Africa, from Tanzania to South Africa.
Sequences of Cyzb from the two clades differed by 4.3% (Table
1). Two groups were also resolved within M. bocagii, distin-
guishing a Senegalese specimen from far West Africa from
the remainder, including material from Ghana, DRC, Kenya,
and Tanzania. Myotis tricolor was recovered in three separate
groups, two corresponding to South African samples and a
third from Kenya. These three clades differed by 3.7-3.8% of
their Cyzb sequences (Table 1).

A haplotype network diagram for the clade containing
Afrotropical Myotis is shown in Fig. 3; no haplotype is shared
among these eight species. Notable here are the substantial
number of substitutions separating East African haplotypes
for both M. tricolor and M. welwitschii from South African
conspecifics. South African samples were lacking in the
M. bocagii cluster, which instead shows multiple, closely
juxtaposed haplotypes (Fig. 3).

Nuclear intron analyses.—The Bayesian (BI) and maximum
likelihood (ML) phylogenetic estimates of the concatenated
analysis of introns ACOX2, COPS7A, ROGDI, and STAT5A
recovered very similar topologies (Fig. 4). Three of the four
Afrotropical species represented by multiple Cyzb haplotypes
were recovered as monophyletic in the nuclear analyses, but
M. goudoti was rendered paraphyletic by the lone sample of
M. anjouanensis. Our intron analysis lacked representatives of
the Asian taxa M. formosus and M. rufoniger, but M. bocagii
and M. goudoti + M. anjouanensis were robustly recovered
as sisters. This clade was then joined to the unresolved cou-
plet of M. tricolor and M. emarginatus. Myotis welwitschii
was confidently placed as sister to and outside the remaining
Afrotropical species. The concatenated analysis resolved
some of the intraspecific clades identified in the mitochondrial
analyses. Myotis tricolor 1 was strongly supported (BS =92%,
PP = 1.0), and there was strong support for M. welwitschii 1
(BS = 81%, PP = 1.0). ML and BI gene trees for individual
introns are presented in Supplementary Data SD1.

The species tree generated from a combined analysis of
four nuclear introns (Fig. 5) had a similar topology to the
concatenated intron analyses. The following relationships
were all strongly supported with PP = 1.0: (M. anjouanensis
+ M. goudoti) M. bocagii); (M. tricolor 1 + M. tricolor 3); and
(M. welwitschii 1 + M. welwitschii 2). As in the concatenated
intron analyses, M. welwitschii is supported as sister to the
remaining Afrotropical clades, although the sister clade is
less well supported. An additional species tree inferred only
with recognized species (i.e., lumping the M. tricolor and
M. welwitschii subclades) had an identical topology and nearly
identical nodal support (Supplementary Data SD2).

Population delimitation analyses conducted in BPP provided
strong support for the evolutionary independence of M. tricolor
clades 1 and 3 and M. emarginatus (Table 2). All analyses, ir-
respective of the combinations of divergence date and effective
population size priors used, support a two-population model for
M. tricolor with a posterior probability > 0.99.

Di1scusSION

In contrast to parallel studies of variation in other Afrotropical
bats, including the vespertilionid Scotophilus (Demos et al.
2018), the rhinolophid Rhinolophus (Demos et al. In press-a),
and the nycterid Nycteris (Demos et al. In press-b), all Myotis
samples were confidently recovered in clades associated with
recognized species. If cryptic diversity is documented by
our analysis, it is limited to geographically structured clades
within the widespread species M. tricolor and M. welwitschii.
Although our geographic sampling of Myotis was limited by
tissue availability and excluded large areas of southern and
western Africa (Fig. 1), the same sampling limitations gener-
ally apply to our analyses of Scotophilus, Rhinolophus, and
Nycteris, in which cryptic diversity is rampant. This suggests
that Myotis diversity in Africa really is far lower than in
Eurasia or the Americas. Presumably, the diversity in Africa
of the ecologically similar “pipistrelloid” bats (13 species
of Pipistrellus, 18 species of Neoromicia, and six species of
Hypsugo; mammaldiversity.org) must preempt some of the in-
sect resources otherwise available to Myotis, as these groups
generally forage using similar slow-hawking flight and both
employ steep frequency-modulated echolocation calls to find
their food (various species accounts in Happold and Happold
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Fig. 2.—Mitochondrial gene tree for Afrotropical Myotis inferred using ¢
posterior probabilities from maximum likelihood and Bayesian analyses

Kerivoula lanosa

ytochrome-b. Paired values at nodes represent bootstrap percentages and
, respectively; support values at nodes for most minor clades not shown.

Specimen localities include counties for Kenya. Museum acronyms are defined in Appendix I.

2013). Low diversity in Africa does not appear to have a
historical explanation: Ruedi et al. (2013) dated the clade
containing all known Afrotropical Myotis at 12.3 Ma, coinci-
dent with the appearance of the New World clade, which now

includes 46 species (Larsen et al. 2012; mammaldiversity.
org). Our genetic data cannot explain the limited diversity
of Afrotropical Myotis but they do eliminate a host of unre-
solved, cryptic lineages as a likely possibility.
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Phylogenetic relationships.—Prior phylogenetic
reconstructions clearly demonstrated that the Afrotropical (or
“Ethiopian”) clade of Myotis also includes both Palearctic
and Indomalayan members; Ruedi and colleagues identified
at least M. emarginatus, M. formosus, and M. rufoniger as
members of this lineage (Ruedi et al. 2013, 2015). However,
the interrelationships of Afrotropical Myotis species remained
unresolved. Using both Cytb and Rag2, Ruedi et al. (2013) con-
fidently recovered the group as a whole (anjouanensis, bocagii,
goudoti, scotti, and welwitschii, plus emarginatus, formosus,
and the later-recognized rufoniger), and offered strong support
for anjouanensis + goudoti and weak support for rufoniger +
welwitschii; other interspecific nodes for this group were un-
supported. Their unsupported topology depicted tricolor as

sister to all remaining Afrotropical Myotis. Using only Cytb
sequences in a Bayesian analysis, Ruedi et al. (2015) presented
a different topology with M. welwitschii as sister to the re-
maining Afrotropical species, but again this topology lacked
nodal support.

Our species tree and concatenated intron analyses offer
clearer resolution of several previously unresolved nodes.
Myotis bocagii is confidently recovered as sister to the
Indian Ocean clade, here represented by M. goudoti +
M. anjouanensis. This group is strongly recovered as sister to
both M. tricolor and M. emarginatus in the nuclear gene tree,
but this relationship has only marginally support in the species
tree (PP = 0.90). Myotis welwitschii appears strongly supported
as the sister to all other sampled members of the Afrotropical
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Fig. 4—Nuclear gene tree for Afrotropical Myotis inferred from the concatenation of four introns (ACOX2, COPS7A, ROGDI, and STATS5A).
Paired values at nodes represent bootstrap percentages and posterior probabilities from maximum likelihood and Bayesian analyses, respectively;
support values at nodes for most minor clades not shown. Specimen localities include counties for Kenya. Museum acronyms are defined in

Appendix L.
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Fig. 5.—Species tree for Afrotropical Myotis inferred in StarBEAST2 using four introns (ACOX2, COPS7A, ROGDI, and STATSA). Numbers at

nodes represent posterior probability values.

610z @unp g0 uo 1senb Aq 6£GZ1GG//80ZA6/leWwWeW(/S601 0L /10p/AENISqe-9]01B-90UBAPE/[BWWEW[/WO02 dno-olwapede//:sdijy woly papeojumoq



PATTERSON ET AL.—GENETIC VARIATION OF AFROTROPICAL MYOTIS 9

Table 2.—Lineage delimitation results based on the four intron data
set for the Afrotropical clade of Myotis under four different parameter
sets. See Methods for parameter details.

Putative species BPP PS1 BPP PS2 BPP PS3 BPP PS4
anjouanensis 0.99 0.99 1.0 1.0
emarginatus 1.0 1.0 1.0 1.0
goudoti 0.99 0.99 1.0 1.0
tricolor clade 1 1.0 1.0 1.0 1.0
tricolor clade 3 1.0 1.0 1.0 1.0
welwitschii clade 1 0.79 0.89 0.96 0.93
welwitschii clade 2 0.79 0.89 0.96 0.93

clade. Although our analysis has many fewer species than the
genus-wide analyses of Ruedi et al. (2013, 2015), we employed
both Palearctic (M. blythii) and Neotropical (M. albescens) spe-
cies to polarize substitutions across four different nuclear loci
within the Afrotropical clade.

Evolutionary and taxonomic implications.—Inclusion of
M. dieteri and M. morrisi and more extensive sampling of
all taxa are needed to translate our results into a clear under-
standing of Afrotropical Myotis. The lack of Myotis samples
from many parts of Africa, especially in the west and south-
west, makes it likely that some additional species of African
Mpyotis remain undiscovered and undescribed. Nevertheless,
with reference to Fig. 1, the following observations are possible
regarding known species.

Mpyotis goudoti (A. Smith, 1834) is the only Afrotropical
species previously subjected to a molecular phylogeographic
analysis. Weyeneth et al. (2011) examined patterns in two
mitochondrial genes from sites across Madagascar with very
different bioclimatic regimes, finding only modest differentia-
tion but a significant isolation-by-distance effect. Our samples
included an individual (FMNH 188609) from Nosy Be, a
“landbridge” island 12 km offshore and in 30 m depths that
would have been united with Madagascar in the Last Glacial
Maximum (Colonna et al. 1996). In keeping with earlier
appraisals, mitochondrial variation among all our samples of
M. goudoti was small (<1%, Table 1), reflecting very recent
historical connections. However, nuclear introns of this sample
are clearly divergent from Madagascan samples that represent
the humid east (FMNH 194181) and arid southwest (FMNH
202489), apparently reflecting reduced gene flow or a founder’s
effect for this island population (Fig. 4).

Mpyotis bocagii Peters, 1870 has a type locality of Duque de
Braganca, Angola. Two subspecies are currently recognized
(Happold 2013a): M. b. bocagii in eastern and southern Africa
and M. b. cupreolus Thomas, 1904 (with a type locality of
Efulen, Bulu Country, Cameroon) in central Africa. Two other
proposed names are now considered synonyms: dogalensis
(Monticelli, 1887), from Aden, Yemen, and hildegardeae
Thomas, 1904, from Fort Hall District, Kenya. Our molecular
analysis fails to support the recognition of two subspecies;
samples from western Africa (Ghana) and central and eastern
Africa (all remaining countries save Senegal and spanning the
type locality of cupreolus) are strongly united and little diver-
gent in Cytb (Fig. 2), and there is no geographic structure to the
multiple haplotypes found in this species (Fig. 3). It must be

noted that none of our samples actually represent the area where
the name M. bocagii is based, and Angolan material is needed
to confirm its membership in this otherwise cohesive group.

Mpyotis tricolor (Temminck, 1832) has a type locality of
Cape Town, South Africa, and no geographic variation is cur-
rently recognized (Bernard 2013), although a single name
appears in its synonymy: loveni (Granvik, 1924), with type
locality on the eastern slopes of Mt. Elgon, Kenya. In contrast
with current taxonomy, our mitochondrial analysis documents
three substantially divergent clades, separated by 4-5% se-
quence divergence. One of these is clustered fairly close to
Granvik’s loveni (tricolor 1) and the other two are in South
Africa (tricolor 2 and tricolor 3). Concatenated intron anal-
ysis shows that M. tricolor clades 1 and 3 represent a cohe-
sive, unified entity; still, the coalescent delimitation analyses
recover them as significantly distinct evolutionary lineages
(Table 1). Integrative taxonomic analysis of morphology and
other characters is needed to determine whether the M. tri-
color haplogroups should be considered clades, subspecies,
or even species and whether tricolor 1 actually corresponds
to Granvik’s loveni.

Mpyotis welwitschii (Gray, 1866) has an unspecified type
locality in Angola. No subspecies are currently recognized
(Happold 2013b), but venustus (Matschie, 1899) from Kinole,
Ukami Mts, Tanzania is regarded as a synonym. Again with
this species, the mitochondrial analyses resolve two recip-
rocally monophyletic clades, one that is equatorial (western
Africa through Uganda to western Kenya) and the other more
southern (Tanzania, Malawi, and South Africa). As in M. tri-
color, these clades differ by 5% in Cytb sequence, a level
exceeding the differentiation of many well-substantiated bat
species (Goodman et al. 2008; Velazco and Patterson 2013;
Patterson et al. 2018). These same clades are apparent, but
only weakly supported, in the concatenated intron analysis,
and appear in only some of the lineage delimitation analyses.
Additional geographic sampling is needed to characterize
contact between the two forms and to determine 1) which (if
either) of the two clades represents typical welwitschii, and
2) whether venustus applies to the other or is truly a synonym
of welwitschii.

Many parts of Africa remain unsampled for Myotis and
these include areas crucial for resolving the group’s nomen-
clature, especially Cape Town, Angola, and western Africa.
After morphological analyses, our own samples should pro-
vide clear molecular and morphological application of the
names hildegardeae Thomas, 1904 (for Kenyan M. bocagii),
loveni (Granvik, 1924) (for Kenyan M. tricolor), and venustus
(Matschie, 1899) (for Tanzanian M. welwitschii). The western
Indian Ocean Myotis anjouanensis and M. goudoti are well
documented and described (Goodman et al. 2010; Weyeneth
2010; Weyeneth et al. 2011). However, Angolan specimens of
both M. bocagii and M. welwitschii are needed to restrict the
application of those names to specific clades, and material from
Cameroon is needed to better document cupreolus. These are
obviously vital elements in establishing a definitive nomencla-
ture for the Afrotropical Myotis.
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Supplementary Data SD1.—Maximum likelihood and
Bayesian gene trees for Afrotropical Myotis, based on the nu-
clear introns ACOX2 intron 3 (ACOX2), COPS7A intron 4
(COPS7A), ROGDI intron 7 (ROGDI), and STAT5A intron 16
(STATSA).

Supplementary Data SD2.—Species tree for recognized spe-
cies of Afrotropical Myotis inferred in StarBEAST2. Numbers
at nodes represent posterior probability values. The analysis
confirms the same topological relationships with nearly iden-
tical support values as in Fig. 5, where both M. tricolor and
M. welwitschii were represented by subclades.
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