
International Journal of Computer Applications Technology and Research

Volume 7–Issue 04, 185-192, 2018, ISSN:-2319–8656

www.ijcat.com 185

Techniques to Control Memory Hogging by Web

Browsers: An in-Depth Review

Harun K. Kamau

School of Computing

and Informatics

Maseno University,

Maseno, Kenya

Dr.O.McOyowo

School of Computing

and Informatics

Maseno University,

Maseno, Kenya

Dr.O.Okoyo

School of Computing

and Informatics

Maseno University,

Maseno, Kenya

Dr.C.Ratemo

School of Computing

and Informatics

Maseno University,

Maseno, Kenya

Abstract: The Web Browser is to date a popular piece of software in modern computing systems. They are the main interface for vast

information access from the Internet. Browsers technologies have advanced to a stage where they do more than before. They now parse

not only plaintext and Hypertext Markup Language (HTML), but also images, videos and other intricate protocols. These advancements

have increased demand for memory. This increased demand poses a challenge in multiprogramming environments. The contemporary

browser reference model does not have a memory control mechanism that can limit maximum memory a browser can use. This leads to

hogging of memory by contemporary browsers. This paper is a review on emergent techniques that have been used to control memory

hogging by browsers based on the contemporary reference architecture. We review major browsers architectures including Mozilla

Firefox, Google Chrome and Internet explorer. We give an in-depth study on techniques that have been adopted with a view to solve

this problem. From these reviews we derive the weaknesses of the contemporary browser architecture and inefficiency of each technique

used.

Keywords: Browser reference architecture, memory hogging, web browser

1. INTRODUCTION

The Internet is progressively becoming an indispensable

component of today’s life. Most often than not, people largely

rely on the expediency and elasticity of Internet-connected

devices in learning, shopping, entertainment, communication

and in broad-spectrum activities, that would otherwise

necessitate their physical presence (Sagar A. et. al., 2010).

Access to information or services via the Internet requires a

medium; a browser operates as a medium. It is the prime

component of a computer system when the Internet services are

required. A browser retrieves, displays and traverses

information resources on the web (World Wide Web

Consortium, 2004).

Information resources comprise text, image, video, or other

piece of content. These resources are accessed and indentified

by a Uniform Resource Identifier (URI). The first browser

known as WorldWideWeb was made in the early 1990s by Tim

Berners-Lee (Tim Berners-Lee, 1999). Since then, browsers

have seen tremendous advancements in their architectures and

usage. The earliest browsers; Nexus, Mosaic and Netscape

were less complex and used considerably low computer

memory. However, they were commonly used for viewing

basic HTML pages. With the birth of the Internet, browsers

have gained a lot of popularity globally.

1.1 Motivation

Today, the browser is the most used computer application

(Allan and Michael, 2006; Antero et. al., 2008). This

phenomenon may be attributed to its various usages in

everyday life. With limited computer power to process

voluminous data generated from various sources, users have

resorted to other technologies like the cloud computing and

other online solutions where there is robust computer

processing power, vast storage, scalability, reliability and on

demand services. In these cases, resources are accessed as

services via the Internet with thin clients especially the

browsers.

Originally, Web information comprised a set of documents that

in most cases contained text and hyperlinks to other related

documents, having little or no client-side code. All rendered

content originated from a single source. Web content has

increasingly become more complex in pursuit to incorporate

interactive features. Today, web programs have advanced to

become highly interactive applications that execute on both the

server side and client machine. With these advancements,

modern web pages are no longer simple documents. They

comprise highly dynamic contents that work together with each

other. In other words, a Web page is now said to be a “system”–

having dynamic contents as programs running in it, interacting

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 7–Issue 04, 185-192, 2018, ISSN:-2319–8656

www.ijcat.com 186

with users, accessing other contents both on the web page and

in the hosting browser, invoking browser Application

Programming Interfaces (APIs), and interacting with programs

on the server side. These advancements require adequate

computer memory in order to run properly from a host

computer.

Consequently, these advancements in content rendering have

raised memory demand browsers. In fact, memory allocation to

a browser rises gradually from tens of Megabytes (Mbs), to

hundreds of Mbs and eventually to Gigabytes (Doug DePerry,

2012). This fact only, categorizes browsers as today’s memory

“wolfs”. Indeed, it leads to browser crash. The size of Random

Access Memory (RAM) is an important factor in the running

of software and consequently determines the level of

multiprogramming. A single process consuming nearly a

gigabyte of RAM in a one GB computer will lead to starvation

of other processes and therefore lower multiprogramming

level. This starvation may eventually lead to a crawl. However,

these browsers behave differently in different platforms and

with the content, the browser loads.

2. METHODS
The works reviewed were based contemporary browsers

architecture and optimization techniques adopted thereon.

2. 1 Introduction

Today, browsers have advanced in terms of content rendering.

This has raised memory demand for browsers. In fact, memory

allocation to a browser rises gradually from tens of Megabytes

(Mbs), to hundreds of Mbs and eventually to Gigabytes (Doug

DePerry, 2012). This fact only categorizes browsers as today’s

memory wolfs. The size of RAM is an important factor in the

running of software and consequently determines the level of

multiprogramming; especially when it comes to browser

efficiency. A single process consuming nearly a gigabyte of

RAM in a one GB computer will lead to starvation of other

processes and therefore lower multiprogramming level. This

starvation may eventually lead to a crawl and even lead to the

browser crashing. However, browsers behave differently in

different platforms and with the content, they display.

2.2 Causes of Memory Hogging

Many users from the respective browser forums have regularly

affirmed that memory hogging is attributed by several factors.

To begin with is the length of the time the browser is used. As

the browser gets used, gradually it will take more time to load

during startup, the speed might decrease; and browsing

eventually starts to slow down. This is a very frequent problem

and occurs partially because of fragmentation in the databases

browsers use. In particular, if Firefox is left running for a

number of hours, consumed memory of well over a Gigabyte is

observed even with only a few tabs open; a long running

memory leak issue that plagues Firefox sometimes (Doug

DePerry, 2012).

Secondly, when a user opens many tabs simultaneously, the

browser will use more RAM. This is because each tab is

designed to cache pictures, text and other active data, which

keeps page data persistent while using multiple tabs.

Expectedly, browsers such as Chrome and Firefox have ways

to turn this behavior off, but the user may not wish it to happen.

This is because, without caching, YouTube videos will not play

in the background, and most real-time web apps will fail to

work correctly.

Memory leakage is another factor. A memory leak happens

when the browser for some reason doesn’t release memory

from objects which are not needed any more. This may happen

because of browser bugs, browser extension problems and

rarely, due to browser developer mistakes in the code

architecture. Leaks may occur because of browser extensions,

interacting with the page. More importantly, a leak may occur

because of two extensions interaction bugs (Ilya Kantor, 2011).

For instance, when Skype extension and the Antivirus are

enabled, it leaks and when any of them is off, it doesn’t.

2.3 Browser Reference Architecture

The following illustrates the convectional browser architecture

adopted while building the contemporary browsers. We keenly

look at how specific browsers have adopted this model.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 7–Issue 04, 185-192, 2018, ISSN:-2319–8656

www.ijcat.com 187

Figure 1: Browser Reference Architecture

The User Interface component provides the methods with

which a user interacts with the Browser Engine. The User

Interface provides standard features (preferences, printing,

downloading, and toolbars) users expect when dealing with a

desktop application.

The Browser Engine component provides a high-level

interface to the Rendering Engine. The Browser Engine

provides methods to initiate the loading of a Uniform Resource

Locator (URL) and other high-level browsing actions (reload,

back, forward). The Browser Engine also provides the User

interface with various messages relating to error messages and

loading progress.

The Rendering Engine component produces the visual

representation of a given URL. The Rendering Engine

interprets the HTML, Extensible Markup Language (XML),

and JavaScript that comprises a given URL and generates the

layout that is displayed in the User Interface. A key component

of the Rendering Engine is the HTML parser, this HTML parser

is quite complex because it allows the Rendering Engine to

display poorly formed HTML pages.

The Networking component provides functionality to handle

URLs retrieval using the common Internet protocols of

Hypertext Transfer Protocol (HTTP), Hyper Text Transfer

Protocol Secure (HTTPS) and File Transfer Protocol (FTP).

The Networking components handle all aspects of Internet

communication and security, character set translations and

MIME type resolution. The Network component may

implement a cache of retrieved documents to minimize network

traffic.

The JavaScript Interpreter component executes the

JavaScript code that is embedded in a website. Results of the

execution are passed to the Rendering Engine for display. The

Rendering Engine may disable various actions based on user

defined properties.

The XML Parser component is used to parse XML documents.

The Display Backend component is tightly coupled with the

host operating system. It provides primitive drawing and

windowing methods that are host operating system dependent.

The Data Persistence component manages user data such as

bookmarks and preferences.

3. BROWSER ARCHITECTURES

In a view to find how browsers have been developed, their

architectures were reviewed to find out whether they are true

derivations from the reference architecture.

3.1 Google Chrome

Google Chrome uses a multi-process architecture which gives

it a competitive edge in performance over other browsers. Each

tab has its own process which runs independently from other

tabs. This allows one tab process to dedicate itself to a single

web-application, thereby increasing browser performance. This

protects the browser application from bugs and glitches in the

rendering engine. Furthermore, it restricts access from each

rendering engine process to others and to the rest of the system.

This scenario offers memory protection and access control as

manifested in operating systems. The multi-process

architecture also increases the stability of the browser, as it

provides insulation. In the case that one process encounters a

bug and crashes, the browser itself and the other applications

running concurrently are preserved.

Function wise, this is an improvement over other browsers, as

highly valuable user information in other tabs will be

preserved. Google Chrome has used the WebKit as a layout

engine until version 27. Later versions have been using

Blink.V8 has been used as JavaScript Interpreter in all versions.

The components of Chrome are distributed under various open

source licenses. Although Google developers have variant

components in their architectural design, they have derived it

from the reference architecture.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 7–Issue 04, 185-192, 2018, ISSN:-2319–8656

www.ijcat.com 188

Figure 3.1: Google Chrome Architecture

3.2 Microsoft Internet Explorer

Essential to the browser's architecture is the use of the

Component Object Model (COM), which governs the

interaction of all of its components and enables component

reuse and extensibility (MSDN, 2016). Internet Explorer uses

Jscript and VBScript as JavaScript interpreter and Trident

layout engine.

Figure 3.2: Internet Explorer Architecture

The following is a description of each of Microsoft Internet

Explorer’s six key framework components:

IExplore.exe is at the top level, and is the Internet Explorer

executable. It is a small application that relies on the other main

components of Internet Explorer to do the work of rendering,

navigation, protocol implementation.

Browsui.dll provides the user interface to Internet Explorer.

Often referred to as the "chrome," this Dynamic Link Library

(DLL) includes the Internet Explorer address bar, status bar,

menus, and so on.

Shdocvw.dll provides functionality such as navigation and

history, and is commonly referred to as the WebBrowser

control. This DLL exposes ActiveX Control interfaces,

enabling you to easily host the DLL in a Windows application

using frameworks such as Microsoft Visual Basic, Microsoft

Foundation Classes (MFC), Active Template Library (ATL), or

Microsoft .NET Windows Forms. When your application hosts

9999 the WebBrowser control, it obtains all the functionality of

Internet Explorer except for the user interface provided by

Browseui.dll. This means that you will need to provide your

own implementations of toolbars and menus.

Mshtml.dll is at the heart of Internet Explorer and takes care

of its HTML and Cascading Style Sheets (CSS) parsing and

rendering functionality. Mshtml.dll is sometimes referred to by

its code name, "Trident". Mshtml.dll exposes interfaces that

enable you to host it as an active document. Other applications

such as Microsoft Word, Microsoft Excel, Microsoft Visio, and

many non-Microsoft applications also expose active document

interfaces so they can be hosted by shdocvw.dll. For example,

when a user browses from an HTML page to a Word document,

mshtml.dll is swapped out for the DLL provided by Word,

which then renders that document type. Mshtml.dll may be

called upon to host other components depending on the HTML

document's content, such as scripting engines (for example,

Microsoft JScript or Microsoft Visual Basic Scripting Edition

(VBScript)), ActiveX controls, XML data,

Urlmon.dll offers functionality for MIME handling and code

download.

WinInet.dll is the Windows Internet Protocol handler. It

implements the HTTP and File Transfer Protocol (FTP)

protocols along with cache management.

Microsoft’s Internet Explorer architecture utilizes the reference

model components though variant in design.IExplorer.exe is a

wrapper for the whole application. Browsui.dll serves as user

interface while Shdocvw.dll performs functions of a browser

engine. The Mshtml.dll is the core component that serves as

rendering engine. It has HTML, CSS, XML and JavaScript

parsers. WinInet.dll provides networking functions as

provided for in the reference architecture.

3.3 Mozilla Firefox

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 7–Issue 04, 185-192, 2018, ISSN:-2319–8656

www.ijcat.com 189

The following model has been used in the design of Mozilla

Firefox (Andre C. et al. 2007).

Figure 3.3: Mozilla Firefox architecture

The User Interface is split over two subsystems, allowing for

parts of it to be reused in other applications in the Mozilla suite

such as the mail/news client. All data persistence is provided

by Mozilla’s profile mechanism, which stores both high-level

data such as bookmarks and low-level data such as a page

cache.

Mozilla’s Rendering Engine is larger and more complex than

that of other browsers. One reason for this is Mozilla’s

excellent ability to parse and render malformed or broken

HTML. Another reason is that the Rendering Engine also

renders the application’s cross-platform user interface. The

User Interface (UI) is specified in platform-independent

Extensible User Interface Language (XUL), which in turn is

mapped onto platform-specific libraries using specially written

adapter components. This architecture distinguishes Mozilla

from other browsers in which the platform-specific display and

widget libraries are used directly, and it minimizes the

maintenance effort required to support multiple, diverse

platforms.

Recently, the core of Mozilla has been transformed into a

common runtime called XULRunner, exposing the Rendering

Engine, Networking, JavaScript Interpreter, Display Backend,

and Data Persistence subsystems to other applications.

XULRunner allows developers to use modern web

technologies to create rich client applications, as opposed to

typical browser-based web applications. In fact, the Mozilla

developers are working on transitioning newer Mozilla-based

applications such as Firefox and Thunderbird to use

XULRunner directly, rather than each using a separate copy of

the core libraries. All components of this model fits exactly to

those in the reference architecture.

3.4 Weaknesses of the Current Browser

Architecture

a) The rendering engine processes the requests made by

the browser engine by giving a visual display of the

URL. This happens provided there is little memory

available for use by the browser. If the operating

system can no longer allocate any more memory, the

computer freezes hence becomes unusable.

b) The browser process prevents other legitimate

processes from being loaded in the main memory if

it consumes almost all-available memory. This

reduces the level of multiprogramming.

From the review of the above named architectures, memory

hogging still remains a thorny issue. In attempt to reduce the its

impact, third party software have been developed.

4. MEMORY OPTIMIZATION

TECHNIQUES

To free memory that is unnecessary to the browser, several

third party tools have been used. Memory optimization

programs include but not limited to the following:

4.1 Firemin

With Firemin for Firefox, you can effectively stop Firefox

memory leaks automatically. As memory usage of this popular

browser increases, your system slows down and you're stuck

with limited system resources. In fact, Firefox can use up to

500MB of memory if you use the browser continuously (F.

Ortega, 2013). Firemin forces Firefox to give back the memory

it took from Windows and allows you to use Firefox in an

optimized environment.

Firemin does not do anything that Windows does not do itself

when the system runs out of RAM. It calls the Windows

function EmptyWorkingSet over and over again in a loop to

free up memory. Calling the function removes as many pages

as possible from the working set of the specified process. The

program ships with a slider that you can use to set the desired

interval in which you want it to call the function.

However, the limitations of Firemin.exe are that, the technical

security rating is 30% dangerous. This is because it records

keyboard and mouse inputs, monitors applications and

manipulates other programs. Moreover, some malware

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 7–Issue 04, 185-192, 2018, ISSN:-2319–8656

www.ijcat.com 190

camouflages itself as Firemin.exe, particularly when located in

the C:\windows or C:\windows\System32 folder. Also, Firemin

is only compatible with Mozilla Firefox.

Figure 4.1: Firemin

4.2 Wise Memory Optimizer

Wise Memory Optimizer helps you free up and tune up the

physical memory taken up by some unknown non-beneficial

applications to enhance PC performance. You can enable

automatic optimization mode when the free PC memory goes

below a value that you can specify, and make Wise Memory

Optimizer run even when the CPU is idle, as well as adjust the

amount of memory you want to free up. Then it will optimize

PC memory automatically in the background.

However, this tool does not prevent the browser from hogging

memory it only reclaims memory from unknown non-

beneficial applications.

Figure 4.2: Wise memory optimizer

4.3 SpeedyFox

SpeedyFox is a tool designed specifically for compacting the

SQLite database files which will in turn reduce the time taken

to read from and write to them. In addition to Firefox which it

was originally designed for, SpeedyFox can now also compact

the databases for the Chrome, Epic Browser, SRWare Iron and

Pale Moon browsers. It also supports the Mozilla Thunderbird

and Skype tools as well.

Upon running the portable executable, SpeedyFox

automatically detects and loads the default profile for each of

the supported applications. As they’re very popular these days,

it’s also possible to load custom profiles for Firefox or Chrome

portable versions. Click the SpeedyFox menu bar and select

“Add custom profile” or drag the profile folder and drop it onto

the SpeedyFox window.

Simply tick the application profiles to optimize and click the

Optimize! Button, SpeedyFox will start to compact the SQLite

databases. The progress window shows what databases are

optimized and also how much space is saved. You need to make

sure the programs being optimized are not running at the time

or they won’t be processed. In a quick test it reduced 14MB of

Firefox databases to 6MB and 192Mb of Chrome databases to

186MB. The author of SpeedyFox recommends running the

tool every 1-2 weeks depending on your usage of the included

browsers.

Though tool increases Mozilla Firefox launch speed, it does not

prevent memory hogging. It just clears cache over some time.

Figure 4.3: SpeedyFox

4.4 All Browsers Memory Zip
All Browsers Memory Zip has no database compacting

functions but is a dedicated memory-optimizing tool for a large

number of popular web browsers. It works very much like

another memory optimizer called CleanMem, but this tool only

handles browsers. In addition to Chrome and Firefox, it also

works with other popular browsers like Opera, Internet

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 7–Issue 04, 185-192, 2018, ISSN:-2319–8656

www.ijcat.com 191

Explorer and Maxthon etc. The program is portable but has

separate 32-bit and 64-bit versions, and when you run it there

will be a small tooltip and then All Browsers Memory Zip will

sit in the system tray optimizing the memory of any running

supported browsers. If you open Task Manager

(Ctrl+Shift+Esc) before you launch the tool, you will see the

used memory for the browser process suddenly decreases by a

massive amount. It is not uncommon to see 1GB+ in memory

usage drop to fewer than 10MB in a few seconds.

Right click on the tray icon to pause the program from

optimizing and pressing Usage Controller will popup the

window above that will allow you to set the maximum amount

or RAM for each browser and edit the shortcut keys. Just select

the browser form the dropdown, enter the max amount in

Megabytes and click Set.

This tool must execute all times a browser process is running.

It requires a significant amount of memory. Consequently, it

impacts negatively when streaming content over the Internet.

Figure 4.4: All browsers zip usage controller

5. CONCLUSION
A review on various techniques adopted in a view to control

memory hogging was presented in this paper. It is evident

enough that memory hogging among various browsers is and

still a thorny issue. It is desired that computer applications use

little memory and execute faster with a view to allow as many

programs to be loaded in the main memory for execution. With

browsers being among such applications, this still remains an

issue under investigation. Many third party applications have

been developed in quest to reduce memory consumption. These

applications include Firemin, Wise Memory Optimizer,

SpeedyFox and All browsers memory zip. After all these tools

have been analyzed, it has been found out that, memory control

is not efficient, poor compatibility issues, overhead to users and

decrease in browser performance. An interesting issue has been

found on the browser reference architecture. The contemporary

architecture in use today aggravates this problem. It has been

found out that, this model lacks memory control mechanism

which would complement these third party applications.

Today, browsers have become a major platform through which

resources accessed via the Internet are availed to the user.

Based on this fact, memory as prime resource has remained a

major limitation while trying to run applications through the

browser. This has become a major drawback in multi

programming environment. A new approach to incorporate a

memory analyzer in the architecture has been suggested. It is

hoped that this shall control memory hogging and reduce

overhead to the browser application while optimizing memory.

6. REFERENCES:

[1] A. E. Hassan and R. C. Holt, (2000). A reference

architecture for web servers. In Proceedings of 7th the

Working Conference on Reverse Engineering (WCRE

’00), pp. 150–160, 2000.

[2] A. Mockus, R. T. Fielding, and J. Herbsleb, (2002) Two

case studies of open source software development:

Apache and Mozilla. In ACM Trans. Software

Engineering and Methodology, pp. 11(3), 309–346, 2002.

[3] A. Taivalsaari and T. Mikkonen, (2011). "The Web as an

Application Platform: The Saga Continues," Proc. 37th

Euromicro Conf. Software Engineering and Advanced

Applications (SEAA 11), IEEE CS, 2011, pp. 170–174.

[4] A. Taivalsaari et al., (2008). Web Browser as an

Application Platform: The Lively Kernel Experience, tech.

report TR-2008-175, Sun Microsystems Labs, 2008.

[5] Accuvant Labs, 2011: Browser Security Comparison; A

Quantitative Approach. Retrieved from

http://files.accuvant.com/web/files/AccuvantBrowserSecC

ompar_FINAL.pdf

[6] Adam Overa, 2011: Web Browser Grand Prix 3: IE9

Enters The Race. Efficiency Benchmarks: Memory Usage

and Management. Retrieved from

http://www.tomshardware.com/reviews/internet-explorer-

9-chrome-10-opera-11,2897-11.html

[7] Adèr, H.J. & Mellenbergh, G.J. (2008). Advising on

Research Methods: A consultant’s companion. Huizen,

the Netherlands: Johannes van Kessel Publish.

[8] Ahmed E. Hassan, Michael W. Godfrey, and Richard C.

Holt, n.d. Software Engineering Research in the Bazaar.

[9] Alan Grosskurth and Michael W. Godfrey, (2005)

Reference architecture for web browsers. In ICSM'05:

Proceedings of the 21st IEEE International Conference on

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 7–Issue 04, 185-192, 2018, ISSN:-2319–8656

www.ijcat.com 192

Software Maintenance (ICSM'05), pp 661-664,

Washington, DC, USA, 2005. IEEE Computer Society.

[10] Alan Grosskurth, Michael W. Godfrey ,(2006)

Architecture and evolution of the modern web browser.

Retrieved from http://grosskurth.ca/papers/browser-

archevol-20060619.pdf

[11] Allan Grosskurth and Michael Godfrey, (2014). Reference

architecture for web browsers. In Journal of Software

Maintenance and Evolution: Research and Practice, pp 1–

7, 2006

 [12] Avant Force, (2016). Retrieved from

http://www.maxthon.com/about-us/

[13] Chris Anderson (2012). The Man Who Makes the Future:

Wired Icon Marc Andreessen. Retrieved from http:

//www.wired.com/2012/04/ff_andreessen/all/

[14] Doug Deperry, (2012). HTML5 security in the modern

web browser perspective.

[15] Gnome desktop environment. Home Page. Retrieved

from Http: //gnome.org.

[16] Karl Gephart (2013): Optimize Firefox’s Performance

with these Memory Add-Ons! : Retrieved from

http://www.drakeintelgroup.com/2013/06/25/Firefox-

memory-addons/

[17] Krause, Ralph (March 2000). Browser Comparison.

Retrieved from http://www.linuxjournal.com/article/5413

[18] Matthew Braga (2011): Web Browser Showdown:

Memory Management Tested. Retrieved from http:

//www.tested.com/tech/web/2420-web-browser-

showdown-memory-management-tested/index.php

[19] Maxthon International Ltd, (2014). Retrieved from

http://www.maxthon.com/about-us/

[20] Nick Veitch, (August 2010). 8 of the best web browsers

for Linux. Retrieved from

http://www.techradar.com/news/software/applications/8-

of-the-best-web-browsers-for-linux-706580/3

 [21] Nyce, J. M. & Kahn P., (1991).From Memex To

Hypertext: Vannevar Bush and the Mind's Machine.

Academia press, San Diego.

[22] Opera Software, (February, 2003). “Opera version

history”. Retrieved from http://www.opera.com/docs/

[23] Pour, Andreas (January, 2003). "Apple Announces New

"Safari" Browser". KDE Dot News. Retrieved from

https://dot.kde.org/2003/01/08/apple-announces-new-

safari-browser

[24] Sagar, A., Pratik, G., Rajwin, P. and Aditya, G., (2010).

Market research on web browsers. Retrieved from

http://www.slideshare.net/sagar_agrawal/research-on-

web-browsers.

[25] T. Mikkonen and A. Taivalsaari, (2007) “Web

Applications – Spaghetti Code for the 21 Century”.

Retrieved from

http://research.sun.com/techrep/2007/abstract-166.html

(presented in the SERA Conference, Prague, Czech

Republic, August 21, 2008)

[26] T. Mikkonen and A. Taivalsaari, (2008) “Web Browser

as an Application Platform: The Lively Kernel

Experience”

http://research.sun.com/techrep/2008/abstract-175.html

(presented in the SEAA Conference, Parma, Italy,

September 4, 2008)

[27] T. Mikkonen and A. Taivalsaari, (2011). "Apps vs. Open

Web: The Battle of the Decade," Proc. 2nd Workshop

Software Eng. for Mobile Application Development (MSE

11), 2011; Retrieved from

http://www.mobileseworkshop.org/papers6-

Mikkonen_Taivalsaari.pdf.

[28] Tim Berners-Lee (1999). Weaving the Web: The Original

Design and Ultimate Destiny of the World Wide Web by

Its Inventor. Harper San Francisco.

[29] W3C (2004). Architecture of the World Wide Web,

Volume One. Online. Retrieved from

http://www.w3.org/TR/webarch/

[30] Wayner, Peter (January, 2005). "BASICS; Custom Tailor

A Web Browser Just for You", The New York Times,

ISSN 0362-4331, OCLC 1645522. Retrieved from

http://query.nytimes.com/gst/fullpage.html?res=9C0DE6

D9163BF934A15752C0A9639C8B63

http://www.ijcat.com/

