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ABSTRACT

A model addressing mutual inhibition in a periodic chemostat is presented in this paper. The operating parameters, including
the nutrient uptake function, washout rate, and nutrient concentration are allowed to be periodic functions of time, with
commensurate periods. It is shown that with mutual inhibition, competitive exclusion always holds in models that would allow
coexistence without inhibition. We further show that initial conditions play a crucial role in determining which species survives.
Simulations using MATLAB appear to confirm the predictions of the models. Some results from the simulations are presented
graphically.
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1. Introduction

Finding criteria for the long term coexistence of species is an important problem in population biology. This
long term coexistence, also referred to as permanence or uniform persistence, requires non-extinction as well
as non-explosion of species, but allows otherwise arbitrary asymptotic behaviour [8]. Most studies dealing
with permanence are centered on models governed by autonomous systems of differential equations. The
models predict that when species compete for n resources available in limiting supply, at most n species
can survive [16]. Thus, for a single limiting resource, the models predict that at most one species can
survive. This competition for a single resource is called exploitative competition[4]. In nature,however, only
a few resources are usually in limiting supply, but the number of species surviving on those few resources is
abundant.

A good place where the predictions of these mathematical models may be tested experimentally is in a
laboratory device called a chemostat. The chemostat models a very simple lake [15] and is important in
ecological studies because the mathematics can be traced and the relevant experiments are possible [4]. It
is an important piece of apparatus for studying interaction between species competing for a nutrient largely
because most parameters that affect the interaction are under the control of the experimenter, see for instance
[2], [3], [4], [5], [6], [7].

Mathematical models of exploitative competition in a well-stirred chemostat operated under constant
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input and dilution rates, with competition for a single essential, non-reproducing, growth limiting nutrient
whose concentration varies periodically with time predict competitive exclusion, that is only one competitor
population avoids extinction (see for instance [1], [2], [6], [13]). That is, in temporally homogeneous (constant
operating parameters) and spatially homogeneous (well-stirred chemostat) environment, the model predicts
competitive exclusion. If the homogeneity conditions are relaxed and the parameters allowed to be periodic,
the models predict that coexistence of the competing species can occur, as noted in [2], [4], [6]. Relaxation
of these conditions is plausible because real environments are far from being homogeneous either in space or
time. In addition to the day/night variability, there are seasonal effects as well as random effects caused by
the variable weather patterns [4].

There have been some studies looking at some aspects of periodicity in chemostat models. Butler, Hsu and
Watman [5] found that in a model of the chemostat with periodic washout rate, under suitable circumstances,
there is coexistence of the competing population. Cushing [17] looked at periodic two predator one prey
interactions and the time sharing of a resource niche and found that there is a possibility of stable coexistence
of the predators. Zhao and Hutson addressed permanence in Kolmogorov periodic-predator prey models with
diffusion with the result that permanence is expected to hold [8]. There have also been some studies involving
various aspects of inhibition to the growth of competing species. Most of these studies looked at one of the
species producing a toxin or shading. Hsu, and Watman[9] looked at a model of the effect of anti-competitor
toxins on plasmid-bearing, plasmid-free competition, and also addressed competition in the chemostat when
one competitor produces a toxin [10]. Hsu et al [11]studied competition in the presence of a lethal external
inhibitor, Braselton and Watman, [12] developed a competition model with dynamically allocated inhibitor
production, while Jianhua et al [14] addressed the effect of inhibitor on the plasmid bearing and plasmid-free
model in the unstirred chemostat. The inhibition included introduction of an external toxin or one of the
species producing the toxin. The models addressing inhibition in these models were those of the homogeneous
chemostat.

In these studies, no model addressed mutual inhibition in competing species. In this study, we present
a model of a 2-species competition with mutual inhibition in a periodically operated chemostat. We shall
assume that the chemostat is spatially homogeneous, but all the parameters in the model including nutrient
input concentration, dilution rate as well as the species specific removal rates are periodic, with their periods
being commensurate. The species specific nutrient uptake is assumed to be a monotone increasing function
of the nutrient concentration, but allowed to be periodic as a function of time with its period being commen-
surate with that of the other parameters. We shall take a Holling Type II function for the nutrient uptake,
that is, the function follows Michaelis-Menten kinetics. As long as both species are present, inhibition is also
present; that xi, being the biomass of species i (i = 1, 2), does not inhibit its own growth, and that overall
inhibition effect to xi decreases as the biomass of xi increases and vice versa. In addition, inhibition to the
growth of xi increases as xj , i = 1, 2, j = 1, 2, i 6= j increases.

In this paper, section 2 presents the model with mutual inhibition as well as some theorems that arise from
the model. Section 3 covers discussion of the results and presents an example with plots of the simulated
model.

2. The Model

The model for competition for a single, essential, growth limiting nutrient with mutual inhibition is described
by

dS(t)

dt
= (S0(t)− S(t))D0(t)−

2∑
i=1

xi(t)Pi(t, S(t))gi(x1(t), x2(t)),

dxi(t)

dt
= xi(t) {Pi(t, S(t))gi(x1(t), x2(t))−Di(t)} , i = 1, 2, (2.1)

xi(0) = xi0 ≥ 0, S0(0) ≥ 0, xi ∈ R+ = [0,∞),

where,
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S(t) is nutrient concentration at time t,
xi(t) is the biomass of ithspecies at time t,
Pi(t, S(t)) is the specific per capita nutrient uptake function of species i,
S0(t) is the input nutrient concentration,
D0(t) is the nutrient dilution rate and,
Di(t) is the specific removal rate (washout rate) of species i,
gi(x1(t), x2(t)) represents the degree of inhibition to the growth of species i.

Here, it is assumed that S0(t), D0(t) and Di(t) are all continuous, ω-periodic, positive functions and that
each Pi(t, S) : R2

+ → R+ is continuous, ω-periodic in t and satisfies:-

i) Pi(t, S) is locally Lipschitz in S,
ii) Pi(t, 0) = 0 for t ≥ 0 and for any t ≥ 0, Pi(t, S) is strictly

increasing for S ∈ R+.

We further assume that gi(x1(t), x2(t)) is a continuous function for all (x1, x2) ∈ R2
+ which satisfies the

following conditions A1:-

i) gi(x1(t), x2(t)) : R2
+ → R+ ∈ [0, 1]

ii) gi(x1(t), x2(t)) is strictly decreasing in xj i = 1, 2, j = 1, 2, i 6= j
iii) gi(x1(t), x2(t)) is strictly increasing in xi
iv) gi(x1(t), x2(t)) = 1 for xj = 0, i 6= j and for all t ≥ 0.

Condition i) helps to delineate the meaning of gi(x1(t), x2(t)) with gi(x1(t), x2(t)) = 0 being total inhi-
bition to the growth of species i while gi(x1(t), x2(t)) = 1 being no inhibition at all. Decreasing levels of
gi(x1(t), x2(t)) imply greater levels of inhibition to the growth of species i and vice versa. Conditions ii) and
iii) make physical sense because we expect increasing biomass of xi to cause a greater inhibition effect on
xj , i = 1, 2, j = 1, 2, i 6= j, while the overall inhibition effect on xi from xj will be decreasing. If xj is not
present, we do not expect any inhibition on xi as condition iv) implies.

In the special case when g1(x1(t), x2(t)) = g2(x1(t), x2(t)) = 1, the system reduces to

Ṡ(t) = (S0(t)− S(t))D0(t)−
n∑
i=1

xi(t)Pi(t, S(t)), (2.2)

ẋi(t) = xi(t)(Pi(t, S(t))−Di(t)) 1 ≤ i ≤ n,

which is the standard chemostat model without inhibition. A discussion of this case may be found in [2],
[4], and [15].

If conditions A1 are satisfied, we have the following results for model (2.1) where, by a solution of (2.1) we
mean a differentiable triple (S(t), x1(t), x2(t)) ∈ R3

+ that satisfies the system of differential equations (2.1).

Theorem 2.1. The positive (S(t), x1(t), x2(t))-cone is positively invariant for (2.1) as are the surfaces
x1 = 0 and x2 = 0. The solutions of the model are uniformly bounded as t→∞ i.e the system is dissipative.

Proof. The solution of system (2.1) is said to be entirely bounded in R if,

sup
t∈R
| (S(t), x1(t), x2(t)) |< +∞. (2.3)
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We start by showing that S(t) > 0. Suppose that S(t) < 0, for all t ≥ 0. Since Ṡ(t) = S0(t)D0(t) −

S(t)D0(t)−
2∑
i=1

xi(t)Pi(t, S(t))gi(x1(t), x2(t)), it follows that

Ṡ(t) ≥ −

[
S(t)D0(t) +

2∑
i=1

xi(t)Pi(t, S(t))gi(x1(t), x2(t))

]

and since S(t) is assumed to be negative,

Ṡ(t)

S(t)
≤ −

[
D0(t) +

1

S(t)

2∑
i=1

xi(t)Pi(t, S(t))gi(x1(t), x2(t))

]
or

Ṡ(t)

S(t)
≥ D0(t) +

1

S(t)

2∑
i=1

xi(t)Pi(t, S(t))gi(x1(t), x2(t))

meaning

S(t) ≥ S(0) exp

∫ t

0

[
D0(ξ) +

1

S(ξ)

2∑
i=1

xi(ξ)Pi(ξ, S(ξ))gi(x1(ξ), x2(ξ))

]
dξ (2.4)

Since the quantity on the right of (2.4) is positive for S(0) = S0 > 0 and for all t, this contradicts our
assumption that S(t) < 0. This means that S(t) > 0 for all t.

From the second equation in (2.1), we immediately see that

xi(t) = xi(0) exp

[∫ t

0

(pi(ξ, S(ξ))gi(x1(ξ), x2(ξ))−Di(ξ))dξ

]
. (2.5)

Thus, for xi(0) ≥ 0 equation (2.5) means xi(t) ≥ 0 for all t. This completes the proof that the solution
(S(t), x1(t), x2(t)) of (2.1) is positive.

We now show that the solution is bounded. Let V (t) = S(t) +x1(t) +x2(t). Clearly, V (t) is a continuous,
positive and ω-periodic function. Then, using (2.1), we find

V̇ (t) = S0(t)D0(t)− (S(t)D0(t) + x1(t)D1 + x2(t)D2(t))

≤ S0(t)D0(t). (2.6)

This means that

V (t) ≤
∫ t

0

S0(ξ)D0(ξ)dξ <∞, for all t ≥ 0 (2.7)

and since all solutions are positive, it follows that all solutions are bounded, completing the proof.

The theorem below gives conditions that make the species either persistent or extinct.

Theorem 2.2. If gi(x1(t), x2(t)) < Di(t)
Pi(t,S(t)) , then lim

t→∞
xi(t) = 0, i = 1, 2, and for all t ≥ 0.

Proof. Assume that Pi(t, S(t)) is locally Lipschitz and is strictly increasing for S ∈ R+, and Pi(t, 0) = 0, for

t ≥ 0. From (2.5) we see that for gi(x1(t), x2(t)) < Di(t)
Pi(t,S(t)) ,

xi(t) = xi(0) exp

[
−
∫ t

0

(Di(ξ)− Pi(ξ, S(ξ))gi(x1(ξ), x2(ξ)))dξ

]
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Since lim
t→∞

xi(0) exp

[
−
∫ t

0

(Di(ξ)− Pi(ξ, S(ξ))gi(x1(ξ), x2(ξ)))dξ

]
= 0, it means that

lim
t→∞

xi(t) = 0, i = 1, 2, completing the proof.

In mutual inhibition, the first few moments of interaction seem to be crucial in determining which species
survives the competition and which becomes extinct. Indeed, the initial concentration S(0) = S0 and
the uptake function Pi(t, S(t)) during the first instances of interaction appear to determine which species
survives. We assume a Holling Type II (Monod) uptake function which is of the form

Pi(t, S(t)) =
µiS(t)

(βi + S(t))
i = 1, 2,

where µ is the intrinsic growth rate and β is a Michaelis-Menten constant.

The relationship between P1(t, S(t)) and P2(t, S(t)) and S(t) will be of one of the following forms:- Figure

S(t)

P
(t

, S
(t

))

P
i
(t, S(t)) > P

j
(t, S(t)) for 0 < t < t

eq

P
i
(t, S(t)) 

P
j
(t, S(t))  

P(t
eq

, S(t
eq

)) 

S(t)

P
(t

, S
(t

))

P
i
(t, S(t)) >P

j
(t, S(t)) for 0 all t > 0

P
i
(t, S(t)) 

P
j
(t, S(t))  

Figure 1: Two possible relationships between the uptake functions of the species

1(i) shows one possible relationship between P1(t, S(t)) and P2(t, S(t)) as S(t) increases where P1(t, S(t)) >
P2(t, S(t)) for 0 < t < teq <∞ while Figure 1(ii) shows another possibility for the same relationship where

P1(t, S(t)) > P2(t, S(t)) for 0 < t ≤ teq =∞. We easily find S(teq) = µ2β1−µ1β2
µ1−µ2

. For this type of relationship

and if we let D0(t) = D1(t) = D2(t) = D(t) for simplicity, we have the following result.

Theorem 2.3. i) If P1(t, S(t)) < P2(t, S(t)) for 0 < t < teq, then for x1(0) = x2(0) > 0, lim
t→∞

x1(t) = 0

and lim
t→∞

x2(t) = x∗2(t) where x∗2(t) is the ω-periodic solution of the equation

dx2(t)

dt
= x2(t) {P2(t, S(t))g2(x1(t), x2(t))−D(t)} , i = 1, 2,

ii) If P1(t, S(t)) > P2(t, S(t)) for 0 < t < teq, then for x1(0) = x2(0) > 0, lim
t→∞

x1(t) = x∗1(t) and

lim
t→∞

x2(t) = 0 where x∗1(t) is the ω-periodic solution of the equation

dx1(t)

dt
= x1(t) {P1(t, S(t))g1(x1(t), x2(t))−D(t)} , i = 1, 2,

This theorem states that in a competition with mutual inhibition, the species which has an advantage at
the beginning of the interaction wins the competition. It also predicts that there is no persistence in this
type of competition. That is the theorem predicts competitive exclusion.

Proof. Since x1(0) = x2(0) > 0, it follows that

g1(x1(0), x2(0)) = g2(x1(0), x2(0)).

Darbose
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From (2.1) we have

xi(t) = x1(0) exp

∫ t1

0

{Pi(ξ, S(ξ))gi(x1(ξ), x2(ξ))−D(ξ)} dξ i = 1, 2. (2.8)

The fact that x1(0) = x2(0) > 0,and P1(t, S(t0)) < P2(t, S(t0)), means that

x1(t1) < x2(t1) for t1 = t0 + a < teq, a > 0 (2.9)

The strict monotonicity of gi(x1(t), x2(t)), i = 1, 2 that satisfies conditions A1 (more specifically A1 (ii)
and (iii)) and (2.9) mean that

g1(x1(t1), x2(t1)) < g1(x1(t0), x2(t0)) = g2(x1(t0), x2(t0)) < g2(x1(t1), x2(t1)) (2.10)

Consequently, (2.10) implies that for t2 = t1 + a < teq, a > 0, we have

x1(t2) < x1(t1) < x1(t0)

and
x2(t0) < x2(t1) < x2(t2).

This process may be repeated for t3 = t2 + a < teq, ..., tn = tn−1 + a ≤ teq, a > 0 until x1(tn) = 0
and, together with condition A1 (iv), find that g2(0, x2(tn)) = 1. Once x1(tn) = 0, it follows from Theorem
2.2 in [2] that x1(t) = 0, for all t ≥ tn. This means that species x1 becomes extinct. When this happens,
species x2 experiences no inhibition to its growth (g2(0, x2(tn)) = 1) and Theorem 3.1 in [2] assures that
lim
t→∞

x2(t) = x∗2(t). This completes proof of the first part of the theorem.

When P1(t, S(t)) > P2(t, S(t)) and x1(0) = x2(0) > 0, then g1(x1(0), x2(0)) = g2(x1(0), x2(0)). An
argument similar to that of the first part the theorem completes the proof.

The theorem above is based on the assumption that the initial population sizes of the two species are
equal at the beginning of the interaction. In most cases in nature, this is not true. We relax this condition
to state the following.

Theorem 2.4. If x1(t)P1(x1(t), x2(t)) < x2(t)P2(x1(t), x2(t)) for 0 < t < teq, then lim
t→∞

x2(t) = x∗2(t),

lim
t→∞

x1(t) = 0, and if x1(t)P1(x1(t), x2(t)) < x2(t)P2(x1(t), x2(t)) for 0 < t < teq then lim
t→∞

x2(t) = 0 and

lim
t→∞

x1(t) = x∗1(t) where x∗i (t) is the ω-periodic solution of the equation

dxi(t)
dt = xi(t) {Pi(t, S(t))gi(x1(t), x2(t))−D(t)} , i = 1, 2, .

Proof. Since x1(t)P1(x1(t), x2(t)) < x2(t)P2(x1(t), x2(t)) for 0 < t < teq, we have by A1 (ii),

g1(x1(t0), x2(t0))P1(t0, S(t0)) < g2(x1(t0), x2(t0))P2(t0, S(t0))

and

exp

∫ t

0

g1(x1(ξ), x2(ξ))P1(ξ, S(ξ))−D(ξ))dξ < exp

∫ t

0

(g2(x1(ξ), x2(ξ))P2(ξ, S(ξ))−D(ξ))dξ.

Using comparison theorems, we conclude that

lim
t→∞

x1(0) exp

∫ t

0

(g1(x1(ξ), x2(ξ))P1(ξ, S(ξ))−D(ξ))dξ

< lim
t→∞

x2(0) exp

∫ t

0

(g2(x1(ξ), x2(ξ))P2(ξ, S(ξ))−D(ξ))dξ.
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It then follows that for some tn ≥ 0, we have x1(tn) < x2(tn), which in turn implies that g1(x1(tn), x2(tn)) <
g2(x1(tn), x2(tn)). Since gi(x1(t), x2(t)), i = 1, 2 is strictly monotonic, we can find a tn+δ ≥ tn ≥ 0 such
that

g1(x1(tn+δ), x2(tn+δ)) < g1(x1(tn), x2(tn)) < g2(x1(tn), x2(tn)) < g2(x1(tn+δ), x2(tn+δ)),

from which we conclude that

x1(tn+δ) < x1(tn) < t2(tn) < x2(tn+δ).

Proceeding in a manner similar to the proof of Theorem 3 completes the proof.

3. Results and Discussion

In the absence of mutual inhibition, (2.2) with periodic parameters predict uniform persistence of the two
competing species and guarantees the existence of at least one positive periodic solution [2].

Model (2.1) that we have presented predicts that if mutual inhibition is present, competitive exclusion
holds. We have shown in Theorem 3 that the species that wins the competition is determined by the initial
conditions of the parameters at the beginning of the interaction. In Theorem 4 we have shown that the initial
biomass of the species contributes in determining which competitor wins. The key difference in predictions
between (2.2) and (2.1) is that while (2.2) predicts persistence for all competing species, (2.1) predicts that
only one competitor survives.

It appears that the species that has even a slight advantage at the beginning of the competition capitalizes
on that advantage, however small, to inhibit the growth of its competitor and ensure its own survival. In the
critical situation where the uptake function and biomass of both species are the same, then the two species
may coexist, but are indistinguishable from each other, at least from a modeling point of view. That is,
the two species behave as if it were a single species and g1(x1(t), x2(t)) = g2(x1(t), x2(t)), for all t ≥ 0. An
open question arises as to whether choosing different functions to model mutual inhibition would result in
different dynamics of (2.1).

Example. We use parameters from [2] where the dilution rate is given by D(t) = µ0 + a cos(ωt), and
vary the initial nutrient input concentration to fit the requirements of Theorem 3. We then vary the initial
biomass concentrations of the competitors to fit the requirements of Theorem 4.

From the simulations, it appears that the hypotheses of both models are satisfied. In fact, we have carried
out hundreds of simulations of these models and all of them seem to agree with the predictions of the
theorems presented. We used a nutrient uptake function of the form

Pi(t, S(t)) =
µiS(t)

βi + S(t)

Here are some of the figures obtained with the following settings.

The values in the columns satisfy the following requirements:- Figure 2.1k (k = a, b, c, d) means the
plot is of model (2.1) using parameter settings from column k = a, b, c, d while figure 2.2k, (k = a, b, c, d)
means the plot is of model(2.2) using parameter settings from column k = a, b, c, d.

Clearly, Figure 1a shows that species x2 wins the competition while Figure 1b shows that species x1

emerges the winner, where by xi, i = 1, 2 winning the competition we mean that lim
t→∞

xi(t) > 0 and

lim
t→∞

xj(t) = 0, i = 1, 2, j = 1, 2, i 6= j. Figure 2a shows that x1(t) looses the competition as predicted by part

b of Theorem 2.2 in [2] while 2b shows coexistence of the two competing species. Figures 2c and 2d again
show coexistence of the two competing species while Figure 1c shows species x2 winning the competition
while figure 1d shows that x1 wins the competition. This is consistent with the predictions of the models in
this paper.
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Table 1: Parameter values used in the plots of figure 1 (a− d) and 2(a− d)

Parameter a b c d
µ0 0.4675 0.4675 0.4675 0.4675
S0(t) 1 11 11 11
a 0.3 0.3 0.3 0.3
ω 0.2 0.2 0.2 0.2
µ1 1 1 1 1
β1 1 1 1 1
µ2 0.7 0.7 0.7 0.7
β2 0.3 0.3 0.3 0.3
x1(0) 10 10 7 8
x2(0) 10 10 10 10

Table 2: Relationship between parameters in table 1

column a P1(0, S(0)) < P2(0, S(0)) x1(0) = x2(0)
column b P1(0, S(0)) > P2(0, S(0)) x1(0) = x2(0)
column c x1(0)P1(0, S(0)) < x2(0)P2(0, S(0)) x1(0) 6= x2(0)
column d x1(0)P1(0, S(0)) > x2(0)P2(0, S(0)) x1(0) 6= x2(0)
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