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Abstract: In this paper a mathematical model that investigates how vaccination affects the dynamics of COVID-19 was
considered. More particularly the model takes into account the waning rate of immunity after vaccination as well as
administration of booster vaccine. Posititivity and boundedness of solutions of the model were proved. The disease free
equilibrium of the model was determined and by using the next generation matrix method both the basic and effective
reproduction numbers of the model were determined. Further, from the effective reproduction number, the minimum critical
value of individuals to be vaccinated for containment of the diseases was determined. It was found that the value is less for a
perfect vaccine compared to an imperfect vaccine. Numerical simulation of the model was done to determine how the
parameters of interest in the study (waning rate of immunity, vaccination rate, administration of booster vaccine and efficacy of
the vaccine) affect the effective reproduction number. The results show that increasing the rates of vaccination, administering
booster vaccine will decrease the effective reproduction number while an increase in waning rate of immunity increases the
effective reproduction number. The disease persist in the population due to the declining of immunity after vaccination which
increases the effective reproduction number.

Keywords: Vaccination, Reproduction Number, COVID-19, Mathematical Model, Re-infection, Waning of Immunity

1. Introduction
Corona Virus Disease of 2019 (COVID-19) is a novel

corona virus that was first identified in December 2019 in
China. It is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [5]. Covid-19 is likened to the
severe acute respiratory syndrome(SARS) occurred in 2003
[7]. However covid-19 is more contagious than (SARS)of
2003 as within 3 months of outbreak there were more than
100,000 confirmed cases and more than 3000 death cases
[7]. In addition, in February 2020, it was found that, the
reproduction number of COVID-19 was about 3.28, which
is higher as compared to 2.79 of (SARS) [7]. As much as
the virus is a threat to everyone, symptoms vary from person
to person. Most individuals experience fever, coughing and
shortness of breath, while others may face savere symptoms

such as damage to the lungs, acute respiratory failure [5] or
others end up dying. Other symptoms include, fatigue, muscle
aches, headache, loss of taste, sore throat, nausea and runny
nose. The virus has since spread rapidly resulting in about
770 million confirmed cases and 6.9 million deaths world wide
[18].

Several interventions were put into place in order to reduce
the spread of the disease. One potential solution that
was proposed is the implementation of non-pharmaceutical
measures which include; wearing face mask, public event
bans, school and workplace closure, keeping social distance,
public transport shutdowns, restrictions on internal movement,
international travel controls and stay at home requirements
[3, 7, 10]. Implementation of these measures have shown
to be effective in containing the spread of other viruses,
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such as SARS-Cov [20]. And hence these measures can
also be used to contain the spread of COVID-19 since they
fall in the same group. However, implementation of these
measures can negatively affect the economy and other health
outcomes, including mental health and chronic conditions [1].
Vaccination is the common method that is relied on apart from
the measures above. Vaccination not only provides protection
for the individual it also provides it for the community at
large since it keeps the effective reproduction rate below the
level which would allow an epidemic to start, hence the
so called ’herd immunity’ [16]. As viruses are constantly
changing, including the one that causes COVID-19, there is
need for people to get vaccinated since the changes can lead to
emergence of variants that can increase the risk of reinfection
[6].

Many mathematical models for example in yellowAli M,
George K and Kate F’s research [2, 11, 13] have been used
to describe the dynamics of COVID-19. In the study done
by Kate F [13] they first considered an SEIR model with no
vaccine and then incorporated a vaccine compartment. The
vaccine considered was imperfect meaning individuals who
are vaccinated can still contract the virus but at a reduced rate.
The model considered in this paper not only incorpoarates
vaccination but also administration of booster vaccination as
well as waning of immunity after vaccination.

2. Formulation of the Model

2.1. Assumptions of the Model

The population under study is divided into the following
compartments; S(t) which denote a fraction of individuals who
are susceptible to COVID-19 but not yet infected at time t,
E(t) a fraction of exposed individuals who are infected but not
yet infectious at time t, I(t) a fraction of infective individuals,
R(t) a fraction of booster vaccinated and recovered individuals
,and V(t) fraction of vaccinated individuals. For notational
convenient we define the following variables; S(t); = S,
E(t); = E, V (t); = V , I(t); = I and R(t); = R

We make the following assumptions for the model
(i) Individuals in each compartment are uniformly mixed.

(ii) Susceptible individuals are vaccinated at a rate η.
However, we assume that immunity induced by
vaccination wanes at a rate ε following vaccination.
Since the vaccines are not perfect,the efficacy of vaccine
is represented by ρ. Thus individuals in compartment V
can be infected if they make contact with individuals in
compartments E and I as the vaccines are imperfect.

(iii) Infectivity rate of exposed individuals is reduced by a
factor λE

(iv) Individuals in E and I compartments recover at rates rE
and rI respectively. There is death due to COVID-19 in
compartment I with a mortality rate d.

(v) Individuals in compartment R who were administered
a booster vaccine are considered to have protective
immunity at a longer period of time otherwise they can

be reinfected at a rate ω. The rate of administering
booster vaccination is b

(vi) The total population size in consideration is a constant
N

The following parameters will be used in the model
(i) β is the transmission rate of the disease, it describes the

number of new cases that arise from each existing case.
(ii) λE is the infection rate of exposed individuals

(iii) η is the rate at which individuals are vaccinated while ρ
is the efficacy of the vaccine

(iv) γ is the rate at which exposed members become
infectious

(v) rE and rI are the rates at which exposed and infective
members recover respectively. However, individulas
in I may die due to COVID-19 at a mortality rate
d. In addition, µ is the natural death rate in each
compartment. ω is the rate at which individuals in R
become susceptible to the disease again.

The schematic diagram for the model is as shown
below. The arrows indicate individuals progressing from one
compartment to another

Figure 1. Schematic diagram showing the progression from one compartment to another.

2.2. The Model

Using the assumptions, parameters schematic diagram
above and evolution of individuals from one compartment to
another, we form the following system of differential equations
describing the model

dS

dt
= φ− βS(λEE + I)− (η + µ)S + εV + ωR,

dV

dt
= ηS − (1− ρ)βV [λEE + I]− (b+ µ+ ε)V,

dE

dt
= βS(λEE + I) + (1− ρ)βV [λEE + I)] (1)

−(γ + rE + µ)E,

dI

dt
= γE − (rI + d+ µ)I,

dR

dt
= rEE + rII − (ω + µ)R+ bV

Equation (1) is subject to the initial conditions S(0) ≥ 0,
V (0) ≥ 0,E(0) ≥ 0, I(0) ≥ 0, andR(0) ≥ 0. We analyze the
system in (1), first starting with its basic properties, positivity
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and boundedness of solutions, which we describe as follows.

3. Model analysis

3.1. Postivity and Boundedness of Solutions

Since we are dealing with human population, the solutions
set {S(t),V(t),E(t),I(t),R(t)}must be positive and bounded. We
therefore state and prove the following theorems with respect
to our model.

Theorem 3.1. The solutions set {S(t),V(t),E(t),I(t),R(t)} for
the equation (1) is positive with the initial conditions {S(0) ≥
0, V (0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0} for
all t > 0 and all nonnegative parameters.

Proof For dSdt we have

dS

dt
= φ− βS(λEE + I)− (η + µ)S + εV + ωR

= φ+ εV + ωR− βS(λEE + I)− (η + µ)S

≥ −S(βλEE + βI + η + µ)

Letting ψ(t) = βλEE + βI + η + µ we have

dS

dt
≥ −Sψ(t)

Just like a separable differential equation, the inequality is
separable. We thus use separation of variables technique to
solve the inequality. That is,∫

dS

S
≥

∫
−ψ(t)dt

We integrate from 0 to t to obtain

[lnS]to ≥ −
∫ t

0

ψ(τ)dτ

=⇒

S(t) ≥ S(0)exp

(
−
∫ t

0

ψ(τ)dτ

)
Since S(0) ≥ 0 and an exponential function is always

positive we have that S(t) ≥ 0
Similarly, we can prove that V(t),E(t),I(t) and R(t) are all

nonnegative.
Theorem 3.2. The solution set of the equation (1) is

bounded within the invariant region Ω ∈ R5
+. Where Ω ={

(S, V,E, I,R) : N ≤ φ
µ

}
Before the proof let’s define what an invariant set is
Definition 3.1. A set Ω is said to be invariant if any solution

with initial condition in the set remains in the set for all time
t ≥ 0.

We now prove the theorem.
Proof Adding the differential equations in system (1), we

have

N ′ = S′ + V ′ + E′ + I ′ +R′

Where ′; = d
dt From equation (1) we have

N ′ = φ− µS − µV − µE − (d+ µ)I − µR
= φ− µ(S + V + E + I +R)− dI
= φ− µN − dI

If there is an infection in the population I(t) > 0. And since
I ≤ N =⇒ dI ≤ dN . Thus,

N ′ ≥ φ− µN − dN = φ− (µ+ d)N

N ′ ≥ φ− (µ+ d)N (2)

If there is no infection, then I(t)=0. Thus,

N ′ ≤ φ− µN (3)

From (2) and (3) we obtain

φ− (µ+ d)N ≤ N ′ ≤ φ− µN

By the variation of constant formulae and taking the limits
of integration from 0 to t we have

e−(µ+d)t
[
N(0) +

∫ t
0
φe(µ+d)τdτ

]
≤ N ≤ e−µt

[
N(0) +

∫ t
0
φeµτdτ

]
(4)

Upon integration and simplifying we obtain

φ
µ+d + e−(µ+d)t

(
N(0)− φ

µ+d

)
≤ N ≤ φ

µ + e−µt
(
N(0)− φ

µ

)
(5)

As t approaches∞ we have

φ

µ+ d
≤ N ≤ φ

µ
(6)

Therefore from (6) we conclude that the solution sets for
system (1) are bounded within the invariant region Ω

3.2. The Basic Reproduction Number

The basic reproduction number, usually denoted by Ro,
is the average number of secondary cases produced by
one infected individual introduced into a population of
susceptible individuals without any interventions in place[4].
If interventions like vaccination are put in place then we will
determine effective reproduction number analogous to Ro,
which we will denote as Re. Therefore both Ro and Re
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will help us know how many individuals one infected person
can transmit the disease to. Which in turn help us know if
an epidemic will occur or not. For instance if R0 > 1 or
Re > 1 there will be an epidemic, that is, the disease persist
in the population for some period. However if Ro < 1
or Re < 1 then the disease will die out. To compute the
basic reproduction number, we use the next generation matrix
method which we describe.

The next generation matrix method
This method is based on dividing the compartments under

study into two;
(i) Disease compartment- This is the compartment in which

individuals are infected
(ii) Non-disease compartment- Individuals here are disease

free.
Following [4] we assume that there are n disease

compartments and m non-disease compartments. We also
assume that there are x and y subpopulations in each of the
compartments n and m respectively. That is, x ∈ Rn and y ∈
Rm .We then denote the rate at which new infections increase
the ith infected compartment by Fi while Vi denote the rate of
decrease in the ith compartment by disease progression, death
and recovery. The general compartmental model thus take the
form;

xi = Fi(x, y)− Vi(x, y), i = 1, 2, ..., n

yj = gj(x, y), j = 1, 2, ...,m
(7)

Next we put some conditions on Fi and Vi;
Fi(x, y) ≥ 0 for all x ≥ 0, y ≥ 0 and i = 1, 2, ..., n. Since

F represent new infections and therefore it is nonnegative
Vi(x, y) ≤ 0 provided xi = 0 for i = 1, 2, ..., n. Vi is

the net outflow from compartment i hence it must be negative
whenever the compartment is empty∑n

i=1 Vi(x, y) ≥ 0 for all x ≥ 0, y ≥ 0. This represent the
total outflow from all infected compartments.

For determination of the basic reproduction number using
this method we only consider the infected compartments.
Moreover, determining Ro involves the linearization of the
ODEs in the infected compartments about the disease free
equilibrium(DFE). The disease free equilibrium for the above
general model will be (0, yo). After linearization about the
DFE, we obtain two matrices F and V given by

F =
∂Fi(0, yo)

∂xi
V =

∂Vi(0, yo)

∂xi

The matrix given by FV −1 is known as the next generation
matrix. The spectral radius of this matrix is what we refer
as the basic reproduction number. With this knowledge on
the next generation matrix, we are now ready to compute
the effective reproduction number but first we determine
the disease free equilibrium(DFE) since we will need it for
determination of F and V. The DFE is determined by equating
each of the equations in (1) to 0 and taking E,I,R to be equal to
0 since there is no disease in the population. After these simple

steps we only remain with two equations thus

φ− (η + µ)So + εVo = 0 (8)
ηSo − (b+ µ+ ε)Vo = 0 (9)

Solving (8) and (9) for So and Vo we obtain

So =
φ(b+ µ+ ε)

(b+ µ)(η + µ) + µε

Vo =
φη

(b+ µ)(η + µ) + µε

With So and Vo as given above the DFE becomes
(So, Vo, 0, 0, 0). For our model in (1) the disease
compartments are E and I. Therefore we will only focus on
the differential equations;

dE

dt
= βS(λEE + I) + (1− ρ(t))βV [λEE + I)]

−(γ + rE + µ)E, (10)
dI

dt
= γE − (rI + d+ µ)I

From (10) we form Fi and Vi which will help us determine F
and V. Since we only have two disease compartments, i = 1, 2.
Therefore we have for Fi

F1 = βS(λEE + I) + (1− ρ)βV [λEE + I)],

F2 = 0
(11)

F2 = 0 in equation (11) is due to the fact that there are no
new infections in compartment I . For Vi we have

V1 = (γ + rE + µ)E

V2 = (rI + µ+ d)I − γE
(12)

Letting γ + rE + µ = c1, rI + µ+ d = c2 and linearizing
systems (11) and (12) about the DFE (So, Vo, 0, 0, 0) we obtain
matrices F and V. That is;

F=
(
βλE [So + (1− ρ)Vo] β[So + (1− ρ)Vo]

0 0

)
V=
(
c1 0
−γ c2

)
To determine the basic reproduction number we have to

find FV −1. First, we determine V −1. We first determine
if determinant of V, |V |, exists and |V | 6= 0 so that V −1 exists.
We easily compute |V | as follows

|V |=
∣∣∣∣ c1 0
−γ c2

∣∣∣∣ = c1c2 6= 0. Thus V −1 exists and it is given by

V −1 =
1

c1c2

(
c2 0
γ c1

)
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With F and V −1 we compute the next generation matrix FV −1. That is;

FV −1 =
1

c1c2

(
βλE [So + (1− ρ)Vo] β[So + (1− ρ)Vo]

0 0

)(
c2 0
γ c1

)
=

1

c1c2

(
c2βλE [So(1− ρ)Vo] + γβ[So + (1− ρ)Vo] c1β[So + (1− ρ)Vo]

0 0

)
The effective reproduction number, Re, is the dominant eigenvalue of the matrix FV −1. Thus we have

Re =
1

c1c2
{c2βλE [So(1− ρ)Vo]}+

1

c1c2
{γβ[So + (1− ρ)Vo]}

=
1

c1
βλESo +

γ

c1

1

c2
βSo +

1

c1
βλE(1− ρ)Vo +

γ

c1

1

c2
β(1− ρ)Vo (13)

We can clearly see that the effective reproduction number is as a result of unvaccinated susceptible individuals and vaccinated
individuals. Thus we can express it as

Re = RSo
o +RVo

o (14)

Where

RSo
o =

1

c1
βλESo +

γ

c1

1

c2
βSo and RVo

o =
1

c1
βλE(1− ρ)Vo +

γ

c1

1

c2
β(1− ρ)Vo

After substituting c1 and c2 as we had let earlier we get

RSo
o =

1

γ + rE + µ
βλESo +

γ

γ + rE + µ

1

rI + µ+ d
βSo (15)

RVo
o =

1

γ + rE + µ
βλE(1− ρ)Vo +

γ

γ + rE + µ

1

rI + µ+ d
β(1− ρ)Vo (16)

With no interventions, from the effective reproduction number we obtain the basic reproduction number as

Ro =
1

γ + rE + µ
βλESo +

γ

γ + rE + µ

1

rI + µ+ d
βSo (17)

Where So = φ
µ = 1. What this means is that before the

disease invasion, the susceptible population is equal to the total
population.

Next we express the effective reproduction number in terms
of Ro for ease of determination of the minimum critical value
to be vaccinated to contain the disease. Note that from now in
our analysis we are going to assume that the rates of recovery
of exposed individuals and infected individuals are equal, thus

we take rE = rI = r. In addition we take 1 − ρ = ψ. After
substituting So = φ

µ = 1 in the equation for Ro we obtain

Ro =
βλE

(γ + r + µ)
+

γβ

(γ + r + µ)(r + µ+ d)
(18)

We can express Re in terms of Ro as follows

RSo
o =

(b+ µ+ ε)φ

(b+ µ)(η + µ) + µε
(Ro) and RVo

o =
φψη

(b+ µ)(η + µ) + µε
(Ro)

Thus

Re =
φRo

(b+ µ)(η + µ) + µε
[b+ µ+ ε+ ηψ] = (So + ψVo)Ro
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For the minimum value to archive elimination as seen in
[14], Re = 1. Therefore

φRo
(b+ µ)(η + µ) + µε

[b+ µ+ ε+ ηψ] = 1

=⇒

φRo(b+ µ+ ε+ ηψ) = (b+ µ)(η + µ) + µε (19)

Our aim is determining the critical value ηc which is easily
archived by making η the subject in equation (19). After some
simple algebra we obtain

ηc =
φ(b+ µ+ ε)(Ro − 1)

b+ µ− φψRo
(20)

This is the minimum critical value that need to be vaccinated
in order to contain the disease. If there is no booster
vaccination we have

ηc =
(µ+ ε)(Ro − 1)

1− ψRo
(21)

For a perfect vaccine and there is no booster vaccination,
that is, for 1− ρ = ψ = 0 and b=0 we have

ηc = (µ+ ε)(Ro − 1) (22)

For a perfect vaccine we expect the critical value to
be vaccinated to be less compared to when the vaccine is
imperfect. Thus, it should be clear that the expression for
ηc in equation (21) should be greater than the expression for
ηc in equation (22). In deed this is true. Let’s prove this by
contradiction. Let’s assume that

(µ+ ε)(Ro − 1) >
(µ+ ε)(Ro − 1)

1− ψRo
=⇒

1 >
1

1− ψRo
=⇒

1− ψRo > 1

=⇒
ψR0 < 0

We know that ψ and Ro are nonnegative thus ψR0 < 0 is
false, hence our assumption is false. Therefore

(µ+ ε)(Ro − 1) <
(µ+ ε)(Ro − 1)

1− ψRo

4. Numerical Simulations
In this section we carry out numerical simulation of our

model. Particularly to know how Re varies with parameters.
The table below shows the values of the parameters used in
simulation.

Table 1. Parameter Values.

Parameter Value Source

φ 0.00005 [8]

β 0.5 [11]

λE 0.314 [11]

η 0.0005 [19]

µ 0.00005 Assumed

ω 0.0033 [9]

ε 0.0042 [15]

ψ 0.2 Assumed

b 0.0001 Assumed

γ 0.1667 [12]

r 0.1 [5]

d 0.0016 [11]

With the parameters aboveRo andRe are 3.6625 and 2.7860
respectively. Also we can determine the numerical value for
ηc, that is

ηc =
φ(b+ µ+ ε)(Ro − 1)

b+ µ− φψRo
= 0.0051

Without booster vaccine, that is for b=0, we have

ηc = 0.0423

We can clearly see that when booster vaccination is
included, the critical value to be vaccinated to achieve
elimination of the disease is less compared to when there is
no booster vaccination.

The Figures below show how Re varies with our parameters
of interest, that is, the rate of vaccination, the rate of
administering booster vaccine, the waning rate of immunity
after vaccination and the efficacy of the vaccine
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Figure 2. Re against η.

Figure 3. Re against b.
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Figure 4. Re against ε.

Figure 5. Re against ψ.

We can clearly see that from Figures 3 and 2, Re decreases
as η and b increases. Figure 3 shows that for η ≥ 0.0051,
Re ≤ 1. Thus there will be no epidemic. Also from Figure
2 we can see that for b ≥ 0.0101, Re ≤ 1 and therefore
no epidemic. Thus increasing the rates η and b higher than

0.0051 and 0.0101 respectively will reduce Re and in turn
prevent an epidemic to occur. From Figure 4 we observe that
Re increases as ε increases. Therefore, if the immunity after
vaccination wanes at a higher rate the disease will remain in the
population. From Figure 5, when the vaccine is perfect(ψ =
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0), Re = 2.725 > 1. Thus there will be an epidemic even
if the vaccine is perfect. This is due to the waning rate of
immunity after vaccination which makes individuals exposed
to the infection. We can also see that as the efficacy of the
vaccine reduces (ψ > o), Re increases.

5. Conclusion and Recommendation

5.1. Conclusion

Booster vaccination reduces the critical value needed to
be vaccinated in order to contain the disease. Moreover,
booster vaccination increases the period of protection against
the disease. Even when the vaccine is perfect the disease still
persist in the population due to the waning rate of immunity.

5.2. Recommendation

The model considered never incorporated how the effect of
environmental factors such as climate affect the spread of the
disease. Moreover, a model that takes into account the waning
of immunity that depends on time is recommended.
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