UNIVERSITY EXAMINATIONS, 2019 FOURTH YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF MATHEMATICS MAT:419- PARTIAL DIFFERENTIAL EQUATIONS II

Instructions to candidates:

Answer Question 1. And any other TWO. All Symbols have their usual meaning

DATE: 2019 TIME:2hrs

Question 1(Entire course: 30 Marks)

(a) (Transport Equation) Write down an explicit formula for a function u solving the initial value problem

$$u_t + b.Du + cu = 0 \quad \text{in } \mathbb{R}^n \times (0, \infty)$$
$$u = g \quad \text{on } \mathbb{R}^n \times \{t = 0\}.$$
(1)

Here $c \in \mathbb{R}$ and $b \in \mathbb{R}^n$ are constants.

(4 Marks)

(b) (Traveling Wave) Consider the Korteweg-de vries (KdV) equation

$$u_t + 6uu_x + u_{xxx} = 0) \quad \text{in } \mathbb{R} \times (0, \infty). \tag{2}$$

We look for a traveling wave solution of the form

$$u(x,t) = v(x - \sigma t), \quad x \in \mathbb{R}, \quad t \in \mathbb{R}$$
 (3)

where σ is called the *speed* and v the *profile*.

(i) Show that

$$-\sigma v + 3v^2 + v'' = 0, (4)$$

where the prime indicates the derivative with respect to $\eta := x - \sigma t$. (5 Marks)

- (ii) Write Equation(4) as a system of first oder equations involving (v, w), where w := v'. (2 Marks)
- (iii) Sketch the phase phase portrait for the system in (ii) and hence determine

$$\lim_{\eta \to \infty} (v, w)$$
, and $\lim_{\eta \to -\infty} (v, w)$?

(4 Marks)

(iv) Solve explicitly Equation(4)

(5 Marks)

(v) Sketch the wave profile.

- (3 Marks)
- (c) (Wave Equation) Solve the initial value problem:

$$u_{tt} - \Delta u = xt , \text{ in } \mathbb{R}, t > 0$$

$$u(x,0) = 0$$

$$u_t(x,0) = 0.$$

(4 Marks)

(d) Let $U \subset \mathbb{R}^n$ be open and bounded, and ∂U be \mathcal{C}^1 . Suppose that u is a harmonic function in the disk $U = \{r < 2\}$ and $r = (x_1^2 + x_2^2)^{1/2}$ and that $u = 3\sin 2\theta + 1$ for r = 2. Without finding the solution, answer the following questions

(i) Find the maximum value of u in U

(1 Marks)

(ii) Calculate the value of u at the origin

(2 Marks)

Question 2 (20 Marks) (Fourier Transformation) The Fourier transform on L^1 .

If $u \in L^1(\mathbb{R}^n)$, we define its Fourier transform thus

$$\hat{u}(y) := \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-ix \cdot y} u(x) dx, \quad y \in \mathbb{R}^n$$
 (5)

and its inverse Fourier transform thus

$$\check{u}(y) := \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{ix \cdot y} u(x) dx, \quad y \in \mathbb{R}^n.$$

$$(6)$$

These integrals converge for each $y \in \mathbb{R}^n$.

(a) (Properties of Fourier transform).

Assume $u, v \in L^2(\mathbb{R}^n)$, prove that

(i)
$$(D^{\hat{\alpha}}u) = (iy)^{\alpha}\hat{u}$$
 for each multiindex α such that $D^{\alpha}u \in L^{2}(\mathbb{R}^{n})$. (3 Marks)

(ii) If
$$u, v \in L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$$
, then $(u * v) = (2\pi)^{n/2} \hat{u}\hat{v}$. (3 Marks)

(b) **Heat equation**. Consider the initial value problem

$$u_t - \Delta u = 0$$
 in $\mathbb{R}^n \times (0, \infty)$
 $u = g$ on $\mathbb{R}^n \times \{t = 0\}.$ (7)

Find the Fourier transform \hat{u} of (7) with respect to spatial variables x only.(2 Marks)

Solve the equation for \hat{u} .

(1 Mark)

Find

$$u(x,t)$$
, for $x \in \mathbb{R}^n, t > 0$. (8)

(5 Marks)

(c) Telegraph equation

The initial-value problem for the one-dimensional telegraph equation is

$$u_{tt} + 2du_t - u_{xx} = 0 \quad \text{in } \mathbb{R} \times (0, \infty)$$
$$u = g \quad , u_t = \text{hon } \mathbb{R} \times \{t = 0\}$$
(9)

for d > 0. Use Fourier transform method to obtain the representation formula:

$$u(x,t) = \frac{e^{-dt}}{(2\pi)^{1/2}} \int_{\{y \le |d|\}} \beta_1(y) e^{ixy + \gamma(y)t} + \beta_2(y) e^{ixy - \gamma(y)t} dy$$

$$+ \frac{e^{-dt}}{(2\pi)^{1/2}} \int_{\{y \ge |d|\}} \beta_1(y) e^{ixy + \delta(y)t} + \beta_2(y) e^{ixy - \delta(y)t} dy, \qquad (10)$$

where

$$\gamma(y) = (d^2 - |y|^2)^{1/2}, \quad |y| \le d
\delta(y) = (d^2 - |y|^2)^{1/2}, \quad |y| \ge d
\hat{g}(y) = \beta_1(y) + \beta_2(y)$$
(11)

(6 Marks)

Question 3 (20 Marks) (Green's function)

Suppose $u \in \mathcal{C}^2(U)$ solves the Boundary Value Problem

$$-\Delta u = f \quad \text{in } U$$

$$u = g \quad \text{on } \partial U,$$
(12)

where f, g are given. The Representation formula using Green's function is given by

$$u(x) = -\int_{\partial U} g(y) \frac{\partial G(x, y)}{\partial \nu} ds(y) - \int_{U} f(y) G(x, y) dy, \quad x \in U,$$
 (13)

where $G(x, y), x, y \in U$ is the Green's function.

(a) Determine Green's function for half space

$$\mathbb{R}^n_+ := \{ x = (x_1, \dots, x_n) \in \mathbb{R}^n | x_n > 0 \}$$

(6 Marks)

(b) Determine

$$\frac{\partial G(x,y)}{\partial \nu}$$

for the \mathbb{R}^n_+ (6 Marks)

- (c) Suppose in Equation (12) f = 0, find the representation formula for u(x) in \mathbb{R}^n_+ (3 Marks)
- (d) Suppose in Equation (12) f = 0, n = 2 and $u(x_1, 0) = 1$, find its explicit solution. (5 Marks)

Question 4 (20 Marks) (Laplace's Equation and Harmonic Functions)

(a) (Mean-Value formulas for Laplace's Equation).

Theorem (Mean-value formulas for Laplace's equation). If $u \in C^2(U)$ is harmonic, then

$$u(x) = \int_{\partial B(x,r)} u \, dS = \int_{B(x,r)} u \, dy \tag{14}$$

for each ball $B(x,r) \subset U$, where U is an open set of \mathbb{R}^n .

Without proofing this theorem, give its physical interpretation and give a simple example for $U \in \mathbb{R}$. (6 Marks)

(b) Strong Maximum Principle.

Suppose $u \in \mathcal{C}^2(U) \cap \mathcal{C}(\bar{U})$ is harmonic within U. Using the Maximum principle, prove that:

$$\max_{\bar{U}} u = \max_{\partial U} u \tag{15}$$

(2 Marks)

(ii) If U is connected and there exists a point $x_0 \in U$ such that

$$u(x_0) = \max_{\bar{U}} u,\tag{16}$$

then u is constant within U. (6 Marks)

(c)

$$-\Delta u = f \quad \text{in } U \quad f \in \mathcal{C}(U)$$

$$u = g \quad \text{on } \partial U, \quad g \in \mathcal{C}(\partial U)$$
(17)

Use the maximum principal to prove that Equation(17) has at most one solution, $u \in \mathcal{C}^2(U) \cap \mathcal{C}(\bar{U})$. (6 Marks)