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Abstract
We analyse the use of a tunable dual wavelength Y-branch DBR laser diode for THz
applications. The laser generates electrically tunable THz difference frequencies in the
range between 100 and 300 GHz. The optical beats are tuned via current injection into a
micro-resistor heater integrated on top of one of the distributed Bragg reflector (DBR)
section of the diode. The laser is integrated in a homodyne THz system employing fiber
coupled ion-implanted LT-GaAs log spiral antennas. The applicability of the developed
system in THz spectroscopy is demonstrated by evaluating the spectral resonances of a
THz filter as well as in THz metrology in thickness determination of a polyethylene
sample.
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1 Introduction

Dual wavelength diode lasers in the visible and near infrared spectral ranges have been used
for various applications. Whereas the shorter wavelength devices between 650 and 850 nm
were used, e.g., for Raman spectroscopy, especially shifted excitation Raman difference
spectroscopy, longer wavelength devices in the spectral range between 1300 and 1550nm
have become key components for compact and efficient CW THz systems [1–4]. Such
monolithic two-color diode lasers are becoming increasingly attractive in comparison to
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conventional THz systems with two independent diode lasers mainly due to their simplified
setup, compactness, simplified spatial overlaps of the two modes, affordability, and highly
stable optical beat frequency [1–4]. Generally, compact homodyne CW THz systems are
attractive for real-time THz applications. Simple and cost-efficient systems for thickness
measurements and spectroscopic application have already been demonstrated based on two
colour distributed feedback (DFB) diode lasers operating in the optical communication
windows of 1300 nm and 1550 nm [5–10]. Such systems allow for a real-time operation
employing frequency scanning either with or without a delay stage [5, 6]. Moreover, frequency
modulation of the CW THz signal opens the possibility to eliminate the mechanical delay line
in the homodyne system which reduces its complexity [7, 8]. In this work, we analyse the
suitability of an electrically tunable two color distributed Bragg reflector (DBR) diode laser at
785-nm centre wavelength for THz applications. The diode laser was successfully developed
for the abovementioned Raman spectroscopic applications [11, 12] where the two wavelengths
were used alternatingly. In contrast, in this work, the laser operates at both wavelengths
simultaneously in order to generate THz radiation. Previously, we published the generation
of single frequency THz radiation at 300 GHz with a non-tunable two-colour laser [13, 14]. In
this work, we introduce a tunable two-colour DBR laser and study the tuning behaviour of the
THz system at difference frequencies between 100 and 300 GHz by implementing the laser
into a standard homodyne THz setup. We perform proof-of-principle application studies in
THz spectroscopy and metrology. The use of such a shorter wavelength laser offers the
opportunity to realise a multisensor system employing, for example, Raman and THz spec-
troscopy, simultaneously with one diode laser light source.

1.1 Device Description and Setup

The system utilises an electrically tunable monolithic two-color DBR-RW-diode laser to excite
a log spiral ion implanted LT-GaAs photoconductive antenna for continuous wave THz
generation via photomixing. The diode is a distributed Bragg reflector (DBR) device which
simultaneously emits at two wavelengths around 785 nm. A scheme of the device is shown in
Fig. 1. The device is based on a vertical layer structure grown by metalorganic vapour-phase
epitaxy as described in Ref. [15]. The device length is 3 mm and the width of the ridge
waveguide amounts to 2.2 μm. The DBR-grating was manufactured as 10th order deeply
etched surface grating having a length of 500 μm. The DBR grating for λ1 has a 0.6-nm
smaller wavelength compared to the λ2 DBR grating. Above the grating for λ1, a resistor
heater is implemented, which was operated with a current Iheater to tune the grating wavelength
towards longer wavelengths, i.e., to reduce the spectral distance between the two branches. For
the Y-branch, an S-bend design was selected with a curved waveguide having a length of
2000 μm. To operate the RW-branches individually, a 1350-μm long contact was processed
above these sections, followed by a 200-μm contact over the coupler. A 450 μm of the S-bend
and a 500-μm long straight RW were used to form a 950-μm output section.

1.2 Electro-Optic Properties

Figure 2 shows the power-voltage-current characteristics for the diode laser at a temperature
T = 20 °C and at an output section current of Ioutput = 35 mA. From Fig. 2, it can be seen, that
laser operation starts at an injection current of IRW − las = 40 mA. The output power increases
with a slope efficiency S = 0.62 W/A. At IRW = 400 mW, an output power of P = 200 mW was
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measured. The conversion efficiency is ηc≈ 0.3. A micro-resistor heater implemented on top of
the DBR section enables variation of the spectral separation between the two wavelengths.
This can be seen in Fig. 3. At an injection current IRW = 200 mA, i.e., an output power of about
P = 100 mW, the heater current was varied between 0 and 350 mA leading to a reduction of the
wavelength spacing from Δλ = 0.6 nm (290 GHz) at Iheater = 0 mA down to nearly Δλ = 0.2 nm
at Iheater = 230 mA. In this current range, the wavelength λ1 tunes from 784.4 to 784.9 nm and
λ2 from 785.0 to 785.1 nm. The emission exhibits multiple modes around the two main
wavelengths λ1 and λ2 with mode hops appearing at certain operation points. Their mode
spacing according to the resonator length of the device is about 30 pm (15 GHz).

For the measurements, the monolithic chip was mounted p-side up on a copper conduction
cooled package (CCP) with 25 mm by 25 mm footprint. In the THz-set-up, the CCP was
mounted on an Aluminum heat sink which was thermally stabilised with a Peltier element, and
a 10 kΩ thermistor was used for completing the thermoelectric loop. The collimated beam
from the diode was coupled into a polarisation maintaining single mode fiber for spectral
analysis. For THz measurements, a coherent homodyne scheme was employed to generate and
detect the emitted THz radiation as described in more detail in our previous work [13, 14]. The
THz emitter and receiver photomixer chips are fiber-coupled ion-implanted gallium arsenide
(GaAs) self-complimentary logarithmic spiral photoconductive antennas with interdigitated
finger electrodes manufactured by defect engineering technology on GaAs substrate [16]. The
output of the two-color laser was split into two parts (emitting arm and detecting arm), with the
detecting arm containing a mechanical delay stage which was varied over time to enable both
the phase and amplitude information to be obtained. To enhance the detection of THz radiation

Fig. 1 Scheme of the Y-branch DBR-RW laser together with the contact scheme

Fig. 2 Power-voltage characteristics of the Y-branch-DBR-RW diode laser
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at the receiver, we incorporated THz lenses (TPX and Teflon) such that maximum THz
radiation intensity was focused at the receiver.

1.3 Tunable CW Terahertz Generation

The THz field generated at the emitting antenna was measured at the receiving antenna as a
photocurrent with lock-in amplifier while the heater current Iheater was increased from 0 to
200 mA. The bias voltage at the emitter antenna was modulated to enable lock-in measure-
ment. The frequency spectra shown in Fig. 4 were obtained by fast Fourier transform (FFT) of
the generated photocurrent signal transients, measured with a mechanical delay stage with a
delay time of 320 ps. The resulting THz frequency values correlate well with the measured
optical beat frequency signal shown in Fig. 3. These measurements verify the tunability of the
THz signal from 0.18 to 0.3 THz. The spectrum at a heater current of 0 mA (Fig. 4 top) shows
distinct frequencies at 0.271 THz, 0.288 THz, 0.300 THz, and 0.316 THz with the expected

Fig. 3 Dependence of the emission wavelength of the two branches of the Y-branch-DBR-RW-diode laser on the
heater current

Fig. 4 Generated THz signal
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spectral mode spacing of about 15 GHz due to the splitting of the two-color bands of the laser
into multiple modes.

THz spectra obtained from FFT of photocurrent measurements, showing tunable multifre-
quency emission in the range 0.182 to 0.3 THz.

1.4 Potential Applications

Though the spectral properties of the laser are not yet optimised for pure single mode emission
at the two wavelength bands and for continuous tuning, we analyse its potential for simple
applications in THz spectroscopy and THz metrology. As an example for THz spectroscopy, a
THz bandpass filter (BPF250GHz-24 Tydex) designed for maximum transmission at 250 GHz
was investigated on its resonance features. The measurements were done by introducing the
filter in the path of the THz signal, in between the transmitting and receiving antennas. The
THz transmission of the filter was determined by measuring the THz signal as a function of
frequency with and without the filter in the path of the THz beam. The obtained normalised
THz transmission spectrum is shown in Fig. 5 in comparison to the normalised reference
spectrum provided by the manufacturer. Our measurement results are in good agreement with
the given transmission characteristics and thus demonstrate that our system can be used for
simple spectroscopic measurements.

To demonstrate the potential applicability of the developed system in THz metrology, a 3.1-
mm polyethylene block sample was prepared and analysed to determine its thickness. We
tuned the beat frequencies transmitted through the sample by adjusting the heater current of the
diode in the range between 0 to 350 mA. A multi-frequency THz map of the different THz
frequency signals was obtained to determine the thickness of the sample directly from the
position shift of the modes due to the delay introduced by the sample with respect to the
original mode position as shown in Fig. 6. The measurement was performed in the frequency
range between 100 and 315 GHz. By performing THz measurements with and without the
sample and measuring the induced shift of the position of the different THz frequency modes
in comparison to the position within the reference measurement, we extract the values for the
optical thickness which are depicted in Fig. 7. We obtain an average position shift of 1.4 mm.

Fig. 5 Normalised transmission characteristics of the THz band pass filter measurement obtained with our CW
THz system and compared with the Tydex data reference measurement
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The actual thickness of the sample can be calculated from the known refractive index (n) of the
material. Using n = 1.54 from [17, 18] and using the equation Δl = (n − 1)ds where Δl is the
optical thickness and ds is the sample thickness, we obtain ds = 2.6 mm. This is in reasonable
agreement with the thickness of 3.1 mm obtained by a Vernier caliper but suggests that the
refractive index in our sample at 300 GHz is slightly lower than the value given in [18].

2 Conclusion

We demonstrate a compact electrically tunable CW terahertz system, based on a tunable two-
color monolithic DBR diode laser that was originally developed for Raman spectroscopy. The
diode laser enables to adjust the optical beat frequency of the emitted wavelengths via current

Fig. 6 Multi-frequency THz signal color map (left) without the sample (reference) and (right) with the sample
showing the shift of the modes’ position as a result of the insertion of the sample in the THz signal path

Fig. 7 Positions of the maximum intensity plotted against heater currents for the reference position and
corresponding new position measurements with the sample at the same heater currents. The difference between
the reference position and the new position due to the shift introduced by the sample gives the thickness of the
sample
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injection to a micro resistor heater implemented on top of the DBR section. CW terahertz
generation in the frequency range of 100–300 GHz was demonstrated and used for simple
spectroscopic and metrologic applications. For the next device generation, we will modify the
diode laser architecture to suppress multimode emission and mode hopping, and to achieve
higher difference frequencies. Thus, the device will enable continuous tuning of the THz
frequency and enable frequency modulated continuous wave (FMCW) approaches [19] for
thickness and depth measurements without mechanically scanning a delay line. Such a laser
will be highly attractive as a single light source for multi-purpose systems, including simul-
taneous Raman and THz sensing.
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